

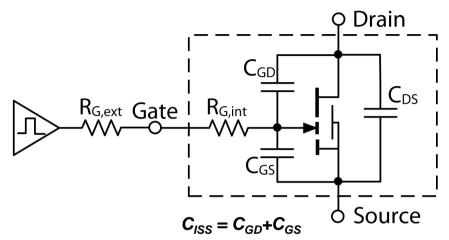
GN012 Application Note

Gate Driver Circuit Design with GaN E-HEMTs

March 08, 2022 GaN Systems Inc.

Simple-driven GaN Technology

Common with Si MOSFET


- True enhancement-mode normally off
- Voltage driven driver charges/discharges C_{ISS}
- Supply Gate leakage I_{GSS} only
- Easy slew rate control by R_G
- Compatible with Si gate driver chip

Differences

- Much Lower Q_G: Lower drive loss; faster switching
- Higher gain and lower V_{GS}: +5-6V gate bias to turn on
- Lower V_{G(th)}: typ. 1.5V

Versus other enhancement-mode GaN

- More robust gate: -20/+10V max rating
- No DC gate drive current required
- No complicated gate diode / PN junction

Gate Bias Level	GaN Systems GaN E-HEMT	Si MOSFET	IGBT	SIC MOSFET
Maximum rating	-20/+10V	-/+20V	-/+20V	-8/+20V
Typical gate bias values	0 or-3/+5-6V	0/+10-12V	0 or -9/+15V	-4/+15-20V

650V Drivers

- GaN Systems GaN HEMTs are compatible with most drivers for silicon devices.
- When the driver supply voltage(V_{DD}) is higher than +6V (the recommended turn-on V_{GS} for GaN), a negative V_{GS} generating circuit is required to convert the V_{GS} into +6/-(V_{DD}-6) V, refer to page 7.
- V_{DD} is recommended to ≤12V. Most popular solutions:

Gate Drivers		Configuration	Isolation	Notes
SILICON LABS	Si8271	Single switch	Isolated	Split outputs
	Si8273/4/5	Half-Bridge	Isolated	Dead time programmability
ANALOG DEVICES	ADuM4121ARIZ	Single Switch	Isolated	Internal miller clamp
BROADCOM.	ACPL-P346	Single Switch	Isolated	Internal miller clamp
HEYDAY	HEY1011	Single Switch	Isolated	Power Rail Integrated
ON Semiconductor	NCP51820	Half Bridge	Non-Isolated	Bootstrap voltage management
RENESA	S RAA226110	Single Switch	Non-Isolated	Programmable Source Current and Adjustable Overcurrent Protection

100V/80V Drivers

- GaN Systems GaN HEMTs are compatible with most of the drivers for silicon devices.
- When the driver supply voltage(V_{DD}) is higher than +6V (the recommended turn-on V_{GS} for GaN), a negative V_{GS} generating circuit is required to converter the V_{GS} into +6/-(V_{DD} -6) V, refer to page 7.
- V_{DD} is recommended to ≤12V.

Most popular solutions:

Gate I	Orivers	Configuration	Split Outputs	Bootstrap voltage management	Notes
ON Semiconductor*	NCP51810	Half-Bridge	Yes	Yes	High Speed
力智電子 POWER INTELLECT	uP1966A	Half-Bridge	Yes	Yes	General Purpose
TEXAS INSTRUMENTS	LMG1205	Half-Bridge	Yes	Yes	General Purpose
Aug.	MDC901	Half-Bridge	Yes	Yes	High Current

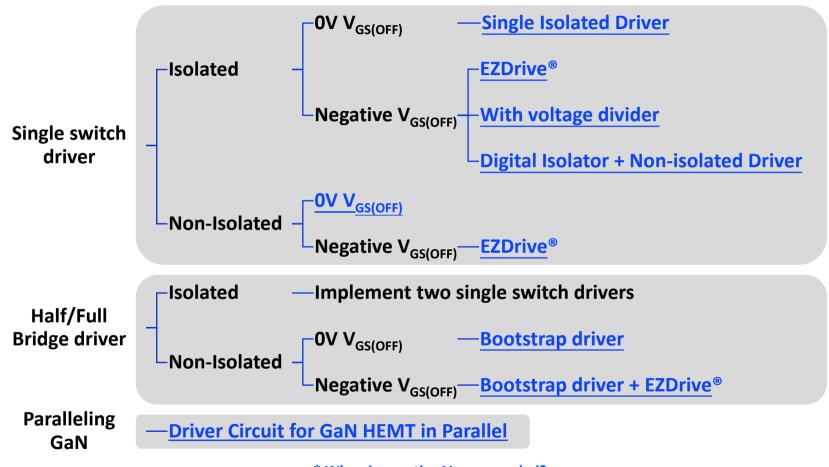
Controllers with Driver Integrated for GaN

- GaN Systems GaN HEMTs are compatible with most of the controllers for silicon devices.
- When the driver supply voltage(V_{DD}) is higher than +6V (the recommended turn-on V_{GS} for GaN), a negative V_{GS} generating circuit is required to converter the V_{GS} into +6/-(V_{DD} -6) V, refer to page 7.
- V_{DD} is recommended to ≤12V.

Most popular solutions:

Configurations	Controllers		Description
Flyback - Adapters - Chargers - Other low-power AC/DCs	ON Semiconductor	NCP1342	650V, Quasi-resonant
	TEXAS INSTRUMENTS	UCC28600	600V, Quasi-resonant
	ON Semiconductor	NCP1250	650V, Fixed frequency
Sync Buck DC/DC (48V/12V)	ANALOG DEVICES	LTC7800	60V, Sync rectifier control, up to 2.2MHz

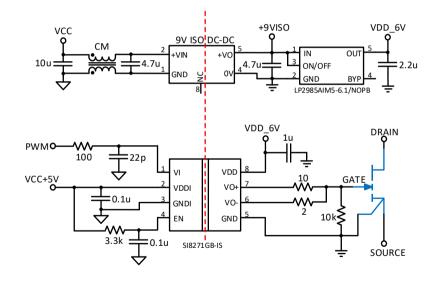
Controllers with Driver Integrated for GaN - continued

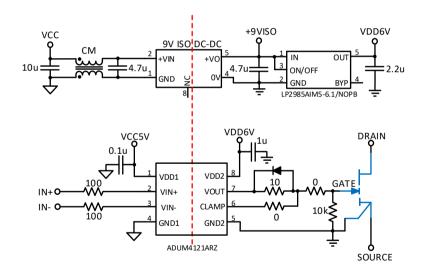

- GaN Systems GaN HEMTs are compatible with most of the controllers for silicon devices.
- When the driver supply voltage(V_{DD}) is higher than +6V (the recommended turn-on V_{GS} for GaN), a negative V_{GS} generating circuit is required to converter the V_{GS} into +6/-(V_{DD} -6) V, refer to page 7.
- V_{DD} is recommended to ≤12V.

Most popular solutions:

Configurations	Controllers		Notes
LLC	ON	NCP13992	600V, current mode controller
- Adapters - Chargers - Flat panel	ON Semiconductor	NCP1399	600V, current mode controller, off-mode operation
	TEXAS INSTRUMENTS	UCC256404	600V, optimized burst mode, low audible noise and standby power
	Instruments	UCC256301	600V, hybrid hysteric mode, low standby power, wide operating frequency
- PC Power Supplies	ON Semiconductor	NCP1615 / NCP1616	700V, critical conduction mode operation
	TEXAS INSTRUMENTS	UCC28180	Programable frequency, continuous conduction mode operation, no AC line HV sensing
PFC + LLC	Monolithic Power Systems, Inc.*	HR1203 700V, CCM/DCM Multi-mode PFC control, adjustable dead-time and mode switching LLC	

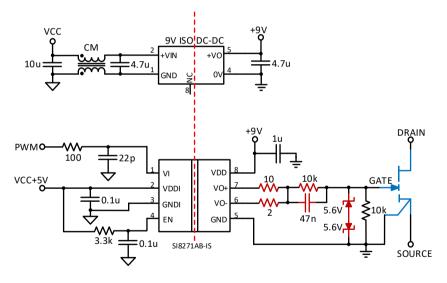
Driver Circuit Examples




Single GaN → Isolated → 0V VGS(OFF) → Single Isolated Driver

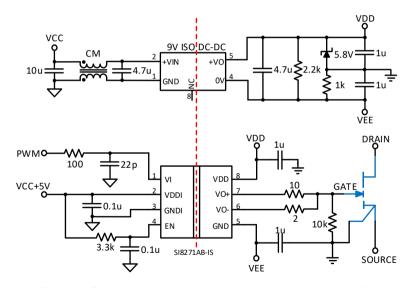
- 0V $V_{\text{GS(OFF)}}$ for low voltage or low power applications, or where the deadtime loss is critical
- Optional CM Choke for better noise immunity

Example I: Driver with separate outputs for switch ON/OFF (SI8271)


Example II: Driver with single output for switch ON and OFF (ADUM4121)

Single GaN → Isolated → Negative V_{GS(OFF)} → EZDrive®

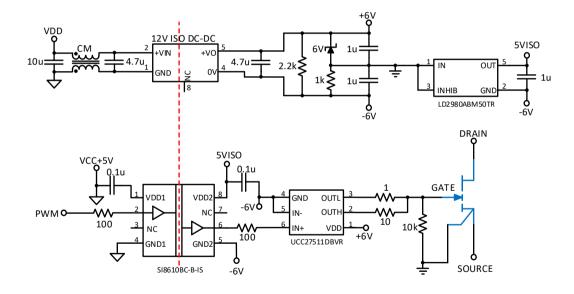
- Negative V_{GS} voltage is applied by the 47nF capacitor
- Compatible with bootstrap circuit
- Applicable from 1kW ~ 100kW power range
- Optional CM Choke for better noise immunity



Example: SI8271 EZDrive® circuit (V_{GS}=+6V/-3V)

Single GaN → Isolated → Negative V_{GS(OFF)} → with Voltage divider

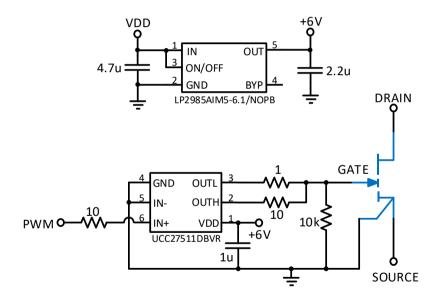
- Negative V_{GS} voltage is generated by the voltage divider (5.8V Zener diode and 1kOhm resistor)
- Robust and easy to layout
- Applicable for applications from low power to higher power (1kW ~ 100kW)
- Optional CM Choke for better noise immunity



Example: SI8271 driving circuit with voltage divider (V_{GS}=+6V/-3V)

Single GaN → Isolated → Negative V_{GS(OFF)} → Digital Isolator + Non-isolated Driver

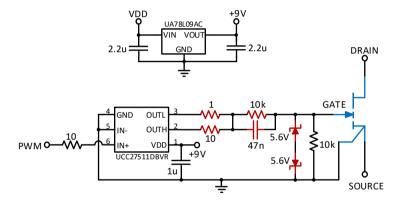
- To enable non-isolated driver or buffer with high sink current capability where isolation is required
- For high power applications: e.g. EV motor drive, PV inverter, etc
- Optional CM Choke for better noise immunity



Example: SI8610 (digital isolator) + UCC27511(Non-isolated driver) (V_{GS}=+6V/-6V)

Single GaN → Non-Isolated → 0V V_{GS(OFF)}

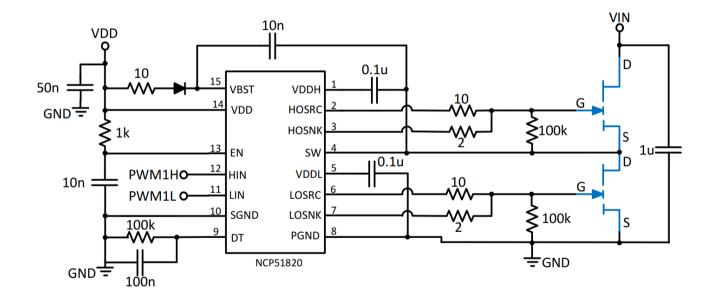
- For single-ended applications (Class E, Flyback, Push-pull etc)
- Or to work with a digital isolator for the high-side switch



Example: UCC27511 driving circuit (V_{GS}=+6V/0V)

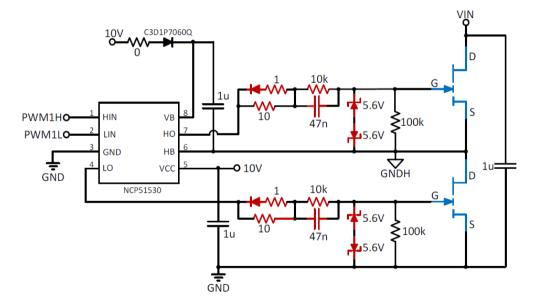
Single GaN → Non-Isolated → Negative V_{GS(OFF)} → EZDrive®

- Negative V_{GS} voltage is applied by the 47nF capacitor
- Compatible with bootstrap circuit
- Optional CM Choke for better noise immunity



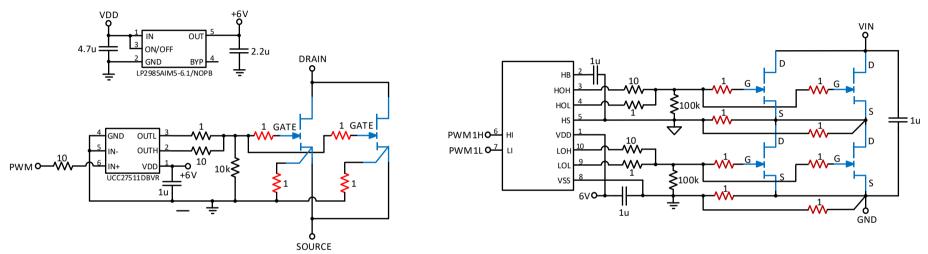
Example: UCC27511 driving circuit (V_{GS}=+6V/-3V))

Half/Full Bridge → 0V V_{GS(OFF)} → Bootstrap


- For low power applications
- Choose the bootstrap diode with low C_J and fast recovery time

Half/Full Bridge → Negative V_{GS(OFF)} → Bootstrap + EZDrive®

- EZDrive® can get a negative voltage on 47nF capacitor, which can be used as turn off voltage
- Turn on/off slew rate is controllable with external resistors to optimize EMI
- Suitable for low power application



Example: NCP51530 Bootstrap driving circuit with EZdrive® (V_{GS}=+6V/-3V)

Driver Circuit for GaN HEMT in Parallel

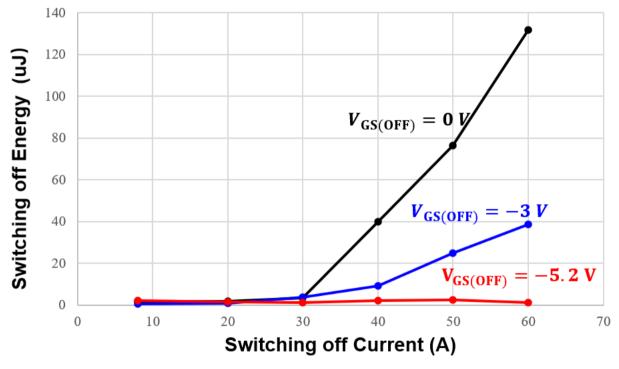
For HEMTs in parallel, add additional 10hm gate and source resistors (as highlighted below)

Example: UCC27511 non-isolated driving circuit for single GaN (V_{GS}=+6V/0V)

Example: Bootstrap driving circuit for half-bridge (V_{GS}=+6V/0V)

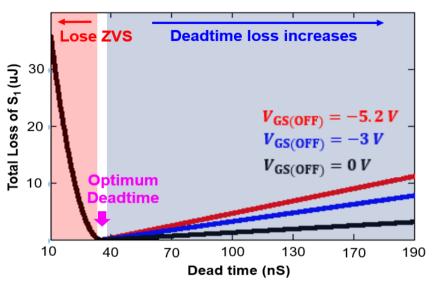
Appendix

- Gate driving tips for V_{GS(OFF)}
- When is V_{GS(OFF)} needed?
- V_{GS(OFF)} vs. Switching-off Loss
- Trade-off between Switching-off Loss and Deadtime Loss


When is negative V_{GS(OFF)} needed?

- Negative V_{GS(OFF)} can increase noise immunity
- Negative V_{GS(OFF)} can reduce switching-off loss especially under high-current
- Deadtime loss increases as Negative V_{GS(OFF)} increase (more info please refer to page 8, APPNOTE GN001)
- There is a tradeoff between switching-off and deadtime loss for V_{GS(OFF)} selection. -3V
 V_{GS(OFF)} is recommended to start with for above 0.5kW applications.

V_{GS(OFF)} vs. Switching-off Loss



Switching-off loss of GS66516B vs. current at V_{BUS} =400 V, 25°C, R_G =1 Ω

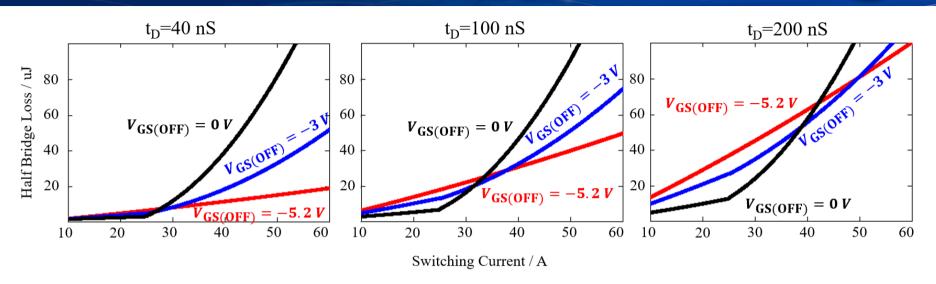
Negative V_{DRoff} reduces the switching off energy under high current.

V_{GS(OFF)} vs. Zero Voltage Switching Boundary and Dead Time Loss

Optimum deadtime (nS) 00 00 100h $V_{BUS} = 500 V$ $V_{BUS} = 400 V$ $V_{BUS} = 300 V$ 20 Switching current(A)

Relation between total loss and deadtime of GS66516B at I_D=10A, 25 °C

Optimum deadtime Vs. switching off current at V_{RUS}=400V


ZVS boundary:

$$t_d > \frac{c_{eq} \cdot V_{bus}}{i_{Switching}}$$
 (1)
$$0.5 \cdot L \cdot i_{Smin}^2 > i_{Smin} \cdot V_{SD} \cdot (t_d - \frac{c_{eq} \cdot V_{DC}}{i_{Smin}}) + 0.5 \cdot C_{eq} \cdot V_{DC}^2$$
 (2)

- Deadtime loss increases as V_{GS(OFF)} increases
- A too short dead time will result in losing ZVS, while a too long dead time will cause additional loss

Trade-off between Switching-off Loss and Deadtime Loss

Half-bridge overall loss vs. switching current under different negative turn-off gate voltage V_{DRoff} (a) with deadtime t_D =40 nS, (b) with deadtime t_D =100 nS, (c) with deadtime t_D =200 nS.

- Negative V_{DRoff} is will make the power stage more efficient under higher power.
- Precise dead time control is the key to higher system efficiency.

Tomorrow's power todayTM

Product and application support at gansystems.com