

GN009 Application Note

PCB Layout Considerations with GaN E-HEMTs

Overview

- This guide provides an overview of the good engineering practice for PCB layout of designs using GaN Systems' E-HEMTs.
- Layout guidelines are introduced for the following four circuit configurations
 - 1) Isolated gate driver circuit for single GaN E-HEMTs
 - 2) Isolated gate driver circuit for paralleled GaN E-HEMTs
 - 3) Half-bridge Booststrap gate driver circuit
 - 4) EZDriveSM circuit
- With optimum board layout combined with low package inductance, GaN E-HEMTs exhibit optimum switching performance

Introduction

- GaN Systems' E-HEMTs have very low packaging inductance, while enabling ultra-low inductance PCB power loops.
- Good engineering practice of layout techniques are required to minimize parasitic inductance and fully utilize the benefit of GaN Systems' E-HEMTs.
- This application note shows key steps to design an optimal PCB layout with GaN to maximize converter performance.

Motivation

- GaN E-HEMTs switch much faster than Si MOSFETs, and require proper engineering consideration of PCB layout design to minimize parasitic inductances.
- Parasitic inductances can cause higher overshoot voltages, ringing/oscillation, EMC issues, which can lead to overstressing the E-HEMTs.

Example of an unsuccessful design caused by unbalanced quasi-common source inductance

Measurement Setup: Lecroy WaveSurfer 10M Oscilloscope, HVD3106 Differential Probe(C1), CWT-3LFB mini Rogowski Coil(C2)

Example of clean switching waveforms when good PCB layout practices are used (400 V/240 A DPT)

PCB Layout Steps

Step 1: Prepare the schematics and identify the components of each critical loop

- Isolated gate driver circuit for single GaN HEMTs
- Isolated gate driver circuit for paralleled GaN HEMTs
- Half-bridge Bootstrap gate driver circuit
- EZDriveSM circuit

Step 2: Place the components according to the design priority and current direction

- Put components as close as possible
- According to the current direction, set the component in sequence
- If there is a conflict for minimizing all the loops, refer to the priority listed on slide 7/8/9/10.

Step 3: Connect the components optimally to achieve low parasitics with flux cancellation techniques

PCB Layout Steps

Step 1: Prepare the schematics and identify the components of each critical loop

- Isolated gate driver circuit for single GaN HEMTs
- Isolated gate driver circuit for paralleled GaN HEMTs
- Half-bridge Bootstrap gate driver circuit
- EZDriveSM circuit

Step 2: Place the components according to the design priority and current direction

- Put components as close as possible
- According to the current direction, set the component in sequence
- If there is a conflict for minimizing all the loops, refer to the priority listed on slide 7/8/9/10.

Step 3: Connect the components optimally to achieve low parasitics with flux cancellation techniques

Isolated gate driver circuit for single GaN HEMT

Priority	Critical Loops	Components	Critical Loops Design Rule
1	Power Commutation loop	Q1,Q2,C _{BUS}	
2a	LS Gate Driver loop (turn-on)	C5,U1,R _{gon} ,Q2	As small as possible
2b	LS Gate Driver loop (turn-off)	C7,U1,R _{goff} ,Q2	

- High-side isolated gate drive design is symmetric as Low-side, not shown in the diagram
- Priority of HS gate driver loop is same as LS

Isolated gate driver circuit for paralleled GaN HEMTs Gan systems

Priority	Critical Loops	Components	Critical Loops Design Rule
1a	Quasi-common source loop (high-side)	Q3, Q4	
1b	Quasi-common source loop (low-side)	Q1, Q2	As small and
2	Power Commutation loop	C _{BUS} , Q3/Q4, Q1/Q2	symmetric for each of
3a	LS Gate Driver loop (turn-on)	C5, U1, RGL, R _{G1} /Q1/R _{S1} , R _{G2} /Q2/R _{S2}	paralleled devices as possible
3b	LS Gate Driver loop (turn-off)	C7, U1, R _{G1} /Q1/R _{S1} , R _{G2} /Q2/R _{S2}	

- High-side isolated gate drive design is symmetric as Low-side, not shown in the diagram
- Priority of HS gate driver loop is same as LS
- Distributed gate and source resistance R_{G1}/R_{G2} and R_{S1}/R_{S2} needs to be separated

Half-bridge Bootstrap Gate Driver Circuit (Non-isolated) Gan Systems

Priority	Critical Loops	Components	Critical Loops Design Rule
1	Power Commutation loop	Q1, Q2, C _{BUS}	
2a	HS Gate Driver Loop (turn-on)	D_{BOOT} , R_{BOOT} , C_{BOOT} , U1, R_{gon_HS} , Q1	
2b	HS Gate Driver Loop (turn-off)	Q1, R _{goff_HS} , U1	As small as possible
2c	LS Gate Driver Loop (turn-on)	C1, U1, R _{gon_LS} , Q2	
2d	LS Gate Driver Loop (turn-off)	Q2, R _{goff_LS} , U1	

Use above table to identify critical loop, components and priority

EZDriveSM circuit (Non-isolated half-bridge)

Priority	Critical Loops	Components	Critical Loops Design Rule
1	Power Commutation Loop	Q1, Q2, C _{BUS}	
2a	HS Gate Driver Loop (turn-on)	$R_{BOOT}, D_{BOOT}, \\ C_{BOOT}, U1, R_{G1}, \\ R_{EZ1}, C_{EZ1}, Z_{EZ1}, \\ Z_{EZ2}, Q1$	
2b	HS Gate Driver Loop (turn-off)	Q1, Z_{EZ1} , Z_{EZ2} , R_{EZ1} , C_{EZ1} , R_{G1} , U1	As small as possible
2c	LS Gate Driver Loop (turn-on)	U1, R _{G2} , R _{EZ2} , C _{EZ2} , Z _{EZ3} , Z _{EZ4} , Q2	
2d	LS Gate Driver Loop (turn-off)	Q2, Z _{EZ3} , Z _{EZ4} , R _{EZ2} , C _{EZ2} , R _{G2} , U1	

Use above table to identify critical loop, components and priority

Note: more details about EZDriveSM please refer to Application note GN010 at https://gansystems.com/

PCB Layout Steps

Step 1: Prepare the schematics and identify the components of each critical loop

- Isolated gate driver circuit for single GaN HEMTs
- Isolated gate driver circuit for paralleled GaN HEMTs
- Half-bridge Bootstrap gate driver circuit
- EZDriveSM circuit

Step 2: Place the components according to the design priority and current direction

- Put components as close as possible
- According to the current direction, set the component in sequence
- If there is a conflict for minimizing all the loops, refer to the priority listed on slide 7/8/9/10.

Step 3: Connect the components optimally to achieve low parasitics with flux cancellation techniques

Step 2.1: Power commutation loops (Top-side cooling) Gan Systems

LS Gate Driver loop

(turn-off)

C7,U1,R_{goff},Q2

2b

Side view

Step 2.2: Gate Driver Circuit Loop (Top-side cooling) Gan Systems

- Locate drivers close to the gate
- Use/create kelvin source for driver return

(turn-off)

Priority	Critical Loops	Components	Critical Loops Design Rule
1	Power Commutation loop	Q1,Q2,C _{BUS}	
2a	LS Gate Driver loop (turn-on)	C5,U1,R _{gon} ,Q2	As small as possible
2b	LS Gate Driver loop	C7,U1,R _{goff} ,Q2	

Step 2.1: Power commutation loops (Bottom-side cooling) Gan Systems

Example: Isolated gate driver circuit w/ single GaN HEMT

Place components as close together as possible

Low-side isolated gate drive design		PGND	
Priority	Critical Loops	Components	Critical Loops Design Rule
1	Power Commutation loop	Q1,Q2,C _{BUS}	
2a	LS Gate Driver loop (turn-on)	C5,U1,R _{gon} ,Q2	As small as possible
2b	LS Gate Driver loop (turn-off)	C7,U1,R _{goff} ,Q2	

Step 2.2: Gate Driver Circuit Loop (Bottom-side cooling)

Example: Isolated gate driver circuit with single GaN HEMT

- Locate drivers close to the gate
- Use/create kelvin source for driver return

LS Gate Driver loop

(turn-off)

2b

Priority	Critical Loops	Components	Critical Loops Design Rule
1	Power Commutation loop	Q1,Q2,C _{BUS}	

2a	LS Gate Driver loop (turn-on)	C5,U1,R _{gon} ,Q2	As small as possible

C7,U1,R_{goff},Q2

PCB Layout Steps

Step 1: Prepare the schematics and identify the components of each critical loop

- Isolated gate driver circuit for single GaN HEMTs
- Isolated gate driver circuit for paralleled GaN HEMTs
- Half-bridge Bootstrap gate driver circuit
- EZDriveSM circuit

Step 2: Place the components according to the design priority and current direction

- Put components as close as possible
- According to the current direction, set the component in sequence
- If there is a conflict for minimizing all the loops, refer to the priority listed on slide 7/8/9/10.

Step 3: Connect the components optimally to achieve low parasitics with flux cancellation techniques

Step 3.1: Introduction: Magnetic Flux Cancellation for Lower Inductance GQN Systems

- When two adjacent conductors are located close with opposite current direction, magnetic flux generated by two current flows will cancel each other.
- This magnetic flux canceling effect can lower the parasitic inductance.
- Arrange the layout so that high-frequency current flows in opposite direction on two adjacent PCB layers.

Step 3.2: Connect the components with Flux-cancelling traces

 Connect the components with Flux-cancelling traces, see below example of top-side cooled devices and bottom-side cooled devices.

Example: Top-side cooled devices (GaN HEMT is on the bottom side of PCB)

Example: Bottom-side cooled devices (gate driver/GaN HEMT/caps on the same side of PCB)

Top view

Experimental Example: 400V/240A DPT Hard-switching Test Gan Systems

DUT: 4 x GS66516T in parallel.

- Using good engineering practice for PCB layout in designs where GaN Systems' E-HEMTs are paralleled, current balancing and clean switching can be achieved. Hard switched is possible to full rated current.
- This example demonstrates ~200V V_{DS} margin on a 400V/240A hard-switching test

Summary

- Due to faster switching speed of GaN E-HEMTs, good engineering practice for PCB layout techniques are required to minimize parasitic inductance and fully utilize these advanced devices.
- Optimizing the PCB layout is important to achieve the maximum performance capability of GaN based designs. With optimum board layout combined with low GaNPX® package inductance, GaN Systems' E-HEMTs exhibit peak switching performance.

Tomorrow's power todayTM

Product and application support at gansystems.com