GN009 Application Note # PCB Layout Considerations with GaN E-HEMTs #### Overview - This guide provides an overview of the good engineering practice for PCB layout of designs using GaN Systems' E-HEMTs. - Layout guidelines are introduced for the following four circuit configurations - 1) Isolated gate driver circuit for single GaN E-HEMTs - 2) Isolated gate driver circuit for paralleled GaN E-HEMTs - 3) Half-bridge Booststrap gate driver circuit - 4) EZDriveSM circuit - With optimum board layout combined with low package inductance, GaN E-HEMTs exhibit optimum switching performance #### Introduction - GaN Systems' E-HEMTs have very low packaging inductance, while enabling ultra-low inductance PCB power loops. - Good engineering practice of layout techniques are required to minimize parasitic inductance and fully utilize the benefit of GaN Systems' E-HEMTs. - This application note shows key steps to design an optimal PCB layout with GaN to maximize converter performance. #### Motivation - GaN E-HEMTs switch much faster than Si MOSFETs, and require proper engineering consideration of PCB layout design to minimize parasitic inductances. - Parasitic inductances can cause higher overshoot voltages, ringing/oscillation, EMC issues, which can lead to overstressing the E-HEMTs. Example of an unsuccessful design caused by unbalanced quasi-common source inductance Measurement Setup: Lecroy WaveSurfer 10M Oscilloscope, HVD3106 Differential Probe(C1), CWT-3LFB mini Rogowski Coil(C2) Example of clean switching waveforms when good PCB layout practices are used (400 V/240 A DPT) ### PCB Layout Steps Step 1: Prepare the schematics and identify the components of each critical loop - Isolated gate driver circuit for single GaN HEMTs - Isolated gate driver circuit for paralleled GaN HEMTs - Half-bridge Bootstrap gate driver circuit - EZDriveSM circuit Step 2: Place the components according to the design priority and current direction - Put components as close as possible - According to the current direction, set the component in sequence - If there is a conflict for minimizing all the loops, refer to the priority listed on slide 7/8/9/10. Step 3: Connect the components optimally to achieve low parasitics with flux cancellation techniques ### **PCB Layout Steps** #### Step 1: Prepare the schematics and identify the components of each critical loop - Isolated gate driver circuit for single GaN HEMTs - Isolated gate driver circuit for paralleled GaN HEMTs - Half-bridge Bootstrap gate driver circuit - EZDriveSM circuit #### Step 2: Place the components according to the design priority and current direction - Put components as close as possible - According to the current direction, set the component in sequence - If there is a conflict for minimizing all the loops, refer to the priority listed on slide 7/8/9/10. Step 3: Connect the components optimally to achieve low parasitics with flux cancellation techniques ### Isolated gate driver circuit for single GaN HEMT | Priority | Critical Loops | Components | Critical Loops
Design Rule | |----------|--------------------------------|-----------------------------|-------------------------------| | 1 | Power Commutation loop | Q1,Q2,C _{BUS} | | | 2a | LS Gate Driver loop (turn-on) | C5,U1,R _{gon} ,Q2 | As small as possible | | 2b | LS Gate Driver loop (turn-off) | C7,U1,R _{goff} ,Q2 | | - High-side isolated gate drive design is symmetric as Low-side, not shown in the diagram - Priority of HS gate driver loop is same as LS ### Isolated gate driver circuit for paralleled GaN HEMTs Gan systems | Priority | Critical Loops | Components | Critical Loops
Design Rule | |----------|---|--|--------------------------------------| | 1a | Quasi-common source
loop (high-side) | Q3, Q4 | | | 1b | Quasi-common source
loop (low-side) | Q1, Q2 | As small and | | 2 | Power Commutation loop | C _{BUS} , Q3/Q4,
Q1/Q2 | symmetric for each of | | 3a | LS Gate Driver loop
(turn-on) | C5, U1, RGL,
R _{G1} /Q1/R _{S1} ,
R _{G2} /Q2/R _{S2} | paralleled
devices as
possible | | 3b | LS Gate Driver loop
(turn-off) | C7, U1,
R _{G1} /Q1/R _{S1} ,
R _{G2} /Q2/R _{S2} | | - High-side isolated gate drive design is symmetric as Low-side, not shown in the diagram - Priority of HS gate driver loop is same as LS - Distributed gate and source resistance R_{G1}/R_{G2} and R_{S1}/R_{S2} needs to be separated ### Half-bridge Bootstrap Gate Driver Circuit (Non-isolated) Gan Systems | Priority | Critical Loops | Components | Critical
Loops
Design Rule | |----------|-----------------------------------|---|----------------------------------| | 1 | Power Commutation loop | Q1, Q2, C _{BUS} | | | 2a | HS Gate Driver Loop
(turn-on) | D_{BOOT} , R_{BOOT} , C_{BOOT} , U1, R_{gon_HS} , Q1 | | | 2b | HS Gate Driver Loop
(turn-off) | Q1, R _{goff_HS} , U1 | As small as possible | | 2c | LS Gate Driver Loop
(turn-on) | C1, U1, R _{gon_LS} , Q2 | | | 2d | LS Gate Driver Loop
(turn-off) | Q2, R _{goff_LS} , U1 | | Use above table to identify critical loop, components and priority ### EZDriveSM circuit (Non-isolated half-bridge) | Priority | Critical Loops | Components | Critical
Loops
Design Rule | |----------|-----------------------------------|--|----------------------------------| | 1 | Power Commutation
Loop | Q1, Q2, C _{BUS} | | | 2a | HS Gate Driver Loop
(turn-on) | $R_{BOOT}, D_{BOOT}, \\ C_{BOOT}, U1, R_{G1}, \\ R_{EZ1}, C_{EZ1}, Z_{EZ1}, \\ Z_{EZ2}, Q1$ | | | 2b | HS Gate Driver Loop
(turn-off) | Q1, Z_{EZ1} , Z_{EZ2} , R_{EZ1} , C_{EZ1} , R_{G1} , U1 | As small as possible | | 2c | LS Gate Driver Loop
(turn-on) | U1, R _{G2} , R _{EZ2} ,
C _{EZ2} , Z _{EZ3} , Z _{EZ4} ,
Q2 | | | 2d | LS Gate Driver Loop
(turn-off) | Q2, Z _{EZ3} , Z _{EZ4} ,
R _{EZ2} , C _{EZ2} , R _{G2} ,
U1 | | Use above table to identify critical loop, components and priority Note: more details about EZDriveSM please refer to Application note GN010 at https://gansystems.com/ ### PCB Layout Steps #### Step 1: Prepare the schematics and identify the components of each critical loop - Isolated gate driver circuit for single GaN HEMTs - Isolated gate driver circuit for paralleled GaN HEMTs - Half-bridge Bootstrap gate driver circuit - EZDriveSM circuit #### Step 2: Place the components according to the design priority and current direction - Put components as close as possible - According to the current direction, set the component in sequence - If there is a conflict for minimizing all the loops, refer to the priority listed on slide 7/8/9/10. Step 3: Connect the components optimally to achieve low parasitics with flux cancellation techniques ### Step 2.1: Power commutation loops (Top-side cooling) Gan Systems LS Gate Driver loop (turn-off) C7,U1,R_{goff},Q2 2b Side view ### Step 2.2: Gate Driver Circuit Loop (Top-side cooling) Gan Systems - Locate drivers close to the gate - Use/create kelvin source for driver return (turn-off) | Priority | Critical Loops | Components | Critical Loops
Design Rule | |----------|----------------------------------|-----------------------------|-------------------------------| | 1 | Power Commutation loop | Q1,Q2,C _{BUS} | | | 2a | LS Gate Driver loop
(turn-on) | C5,U1,R _{gon} ,Q2 | As small as possible | | 2b | LS Gate Driver loop | C7,U1,R _{goff} ,Q2 | | ## Step 2.1: Power commutation loops (Bottom-side cooling) Gan Systems #### Example: Isolated gate driver circuit w/ single GaN HEMT Place components as close together as possible | Low-side isolated gate drive design | | PGND | | |-------------------------------------|-----------------------------------|-----------------------------|-------------------------------| | Priority | Critical Loops | Components | Critical Loops
Design Rule | | 1 | Power Commutation loop | Q1,Q2,C _{BUS} | | | 2a | LS Gate Driver loop
(turn-on) | C5,U1,R _{gon} ,Q2 | As small as possible | | 2b | LS Gate Driver loop
(turn-off) | C7,U1,R _{goff} ,Q2 | | ### Step 2.2: Gate Driver Circuit Loop (Bottom-side cooling) #### Example: Isolated gate driver circuit with single GaN HEMT - Locate drivers close to the gate - Use/create kelvin source for driver return LS Gate Driver loop (turn-off) 2b | Priority | Critical Loops | Components | Critical Loops Design Rule | |----------|------------------------|------------------------|----------------------------| | 1 | Power Commutation loop | Q1,Q2,C _{BUS} | | | 2a | LS Gate Driver loop
(turn-on) | C5,U1,R _{gon} ,Q2 | As small as possible | |----|----------------------------------|----------------------------|----------------------| | | | | | C7,U1,R_{goff},Q2 ### PCB Layout Steps Step 1: Prepare the schematics and identify the components of each critical loop - Isolated gate driver circuit for single GaN HEMTs - Isolated gate driver circuit for paralleled GaN HEMTs - Half-bridge Bootstrap gate driver circuit - EZDriveSM circuit Step 2: Place the components according to the design priority and current direction - Put components as close as possible - According to the current direction, set the component in sequence - If there is a conflict for minimizing all the loops, refer to the priority listed on slide 7/8/9/10. Step 3: Connect the components optimally to achieve low parasitics with flux cancellation techniques ### Step 3.1: Introduction: Magnetic Flux Cancellation for Lower Inductance GQN Systems - When two adjacent conductors are located close with opposite current direction, magnetic flux generated by two current flows will cancel each other. - This magnetic flux canceling effect can lower the parasitic inductance. - Arrange the layout so that high-frequency current flows in opposite direction on two adjacent PCB layers. ### Step 3.2: Connect the components with Flux-cancelling traces Connect the components with Flux-cancelling traces, see below example of top-side cooled devices and bottom-side cooled devices. Example: Top-side cooled devices (GaN HEMT is on the bottom side of PCB) Example: Bottom-side cooled devices (gate driver/GaN HEMT/caps on the same side of PCB) Top view ### Experimental Example: 400V/240A DPT Hard-switching Test Gan Systems DUT: 4 x GS66516T in parallel. - Using good engineering practice for PCB layout in designs where GaN Systems' E-HEMTs are paralleled, current balancing and clean switching can be achieved. Hard switched is possible to full rated current. - This example demonstrates ~200V V_{DS} margin on a 400V/240A hard-switching test ### Summary - Due to faster switching speed of GaN E-HEMTs, good engineering practice for PCB layout techniques are required to minimize parasitic inductance and fully utilize these advanced devices. - Optimizing the PCB layout is important to achieve the maximum performance capability of GaN based designs. With optimum board layout combined with low GaNPX® package inductance, GaN Systems' E-HEMTs exhibit peak switching performance. ### Tomorrow's power todayTM Product and application support at gansystems.com