

GN001 Application Note

An Introduction to GaN Enhancement-mode HEMTs

March 08, 2022 GaN Systems Inc.

Content

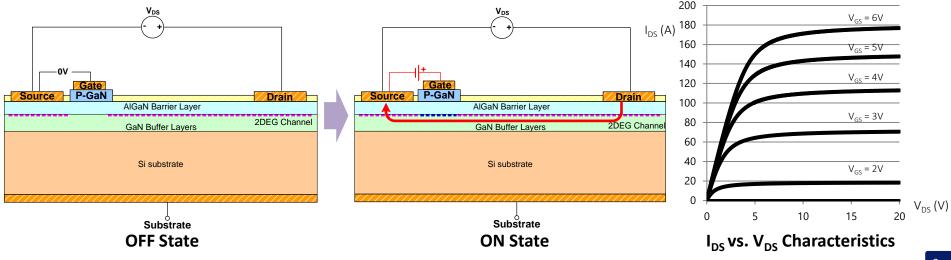
Basics and Mechanism

GaN Material and 2D Electron Gas (2DEG)

Enhancement-mode GaN HEMT

□ GaN Systems Simple-driven GaN technology

Characteristics


Design Resources

Please visit <u>http://gansystems.com</u> or the latest version of this document

Basic structure of GaN E-HEMT

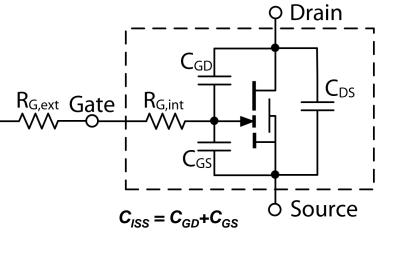
GaN Enhancement mode High Electron Mobility Transistor (E-HEMT)

- A lateral 2-dimensional electron gas (2DEG) channel formed on AlGaN/GaN heteroepitaxy structure provides very high charge density and mobility
- For enhancement mode operation, a gate is implemented to deplete the 2DEG underneath at 0V or negative bias. A positive gate bias turns on the 2DEG channel
- It works like a MOSFET except with better switching performance

Systems

Simple-driven GaN Technology

Common with Si MOSFET


- True enhancement-mode normally off
- Voltage driven driver charges/discharges C_{ISS}
- Supply Gate leakage I_{GSS} only
- Easy slew rate control by R_G
- Compatible with Si gate driver chip

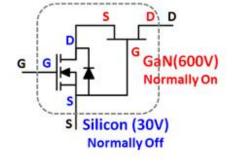
Differences

- Much Lower Q_G: Lower drive loss; faster switching
- Higher gain and lower V_{GS} : +5-6V gate bias to turn on
- Lower V_{G(th)}: typ. 1.5V

Versus other enhancement-mode GaN

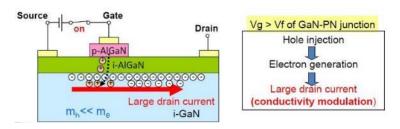
- More robust gate: -20/+10V max rating
- No DC gate drive current required
- No complicated gate diode / PN junction
- GaN HEMTs are simple to drive, for more info please refer to application note GN012

Gate Bias Level	GaN Systems GaN E-HEMT	Si MOSFET	IGBT	SIC MOSFET
Maximum rating	-20/+10V	-/+20V	-/+20V	-8/+20V
Typical gate bias values	0 or-3/+5-6V	0/+10-12V	0 or -9/+15V	-4/+15-20V



GaN Systems E-mode HEMT

- True Enhancement mode
- Simple 3-terminal power switch
- Best FOM and performance
- Island technology Easy to scale
- GaNPx embedding package
- No reverse recovery loss
- Easy to parallel


D-mode GaN (Cascode) GaN Gate In

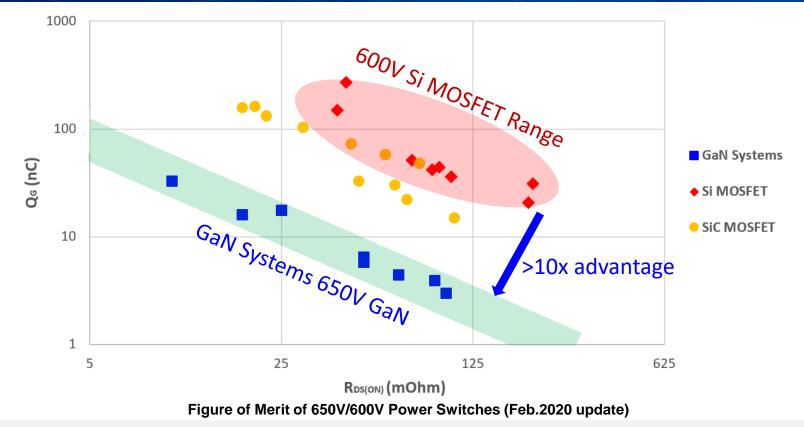
- D-mode technology
- Uncontrollable Speed (EMI)
- Internal Node causing reliability problems – Hard to troubleshoot
- Requires matching between Si/GaN

 Hard to scale
- Reverse Recovery (Qrr)
- Difficult to parallel

e) GaN Gate Injection Transistor (GIT)

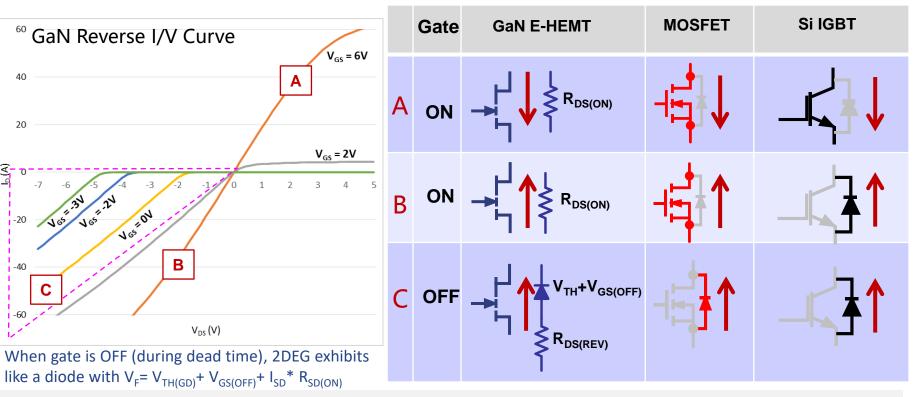
- High gate current required (like BJT)
- Difficult to drive Complicated gate characteristics
- Recombination current:
 - Strong temperature dependency
 - Paralleling stability is a concern
 - Lower speed
 - Worse FOM than E-HEMT

Content


Basics and Mechanism

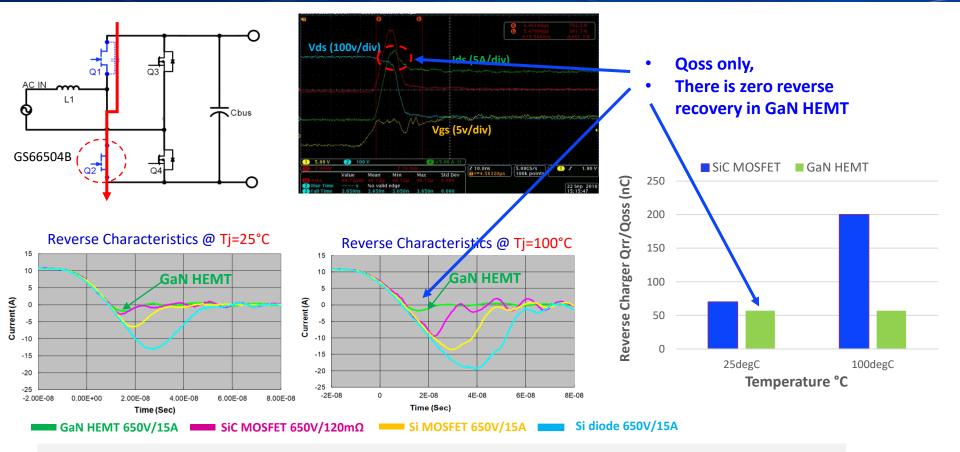
Characteristics

- □ Figure of merit
- □ Reverse conduction Characteristics
- □ Zero reverse recovery
- Output capacitance
- □ Switching transition
- □ Switching energy
- Design Resources


Figure of Merit

GaN Systems E-mode devices have superior R_{ON} & Q_G performance over Si and SiC MOSFETs, resulting in lower switching charge requirements and faster switching transition

Reverse Conduction Characteristics


- There is no body diode (as with Si and SiC MOSFETs)
- But, GaN 2DEG can conduct in 3rd quadrant No need for anti-parallel diode (as in Si IGBT)

For more info: https://gansystems.com/wp-content/uploads/2020/01/Common-misconceptions-about-the-MOSFET-body-diode.pdf

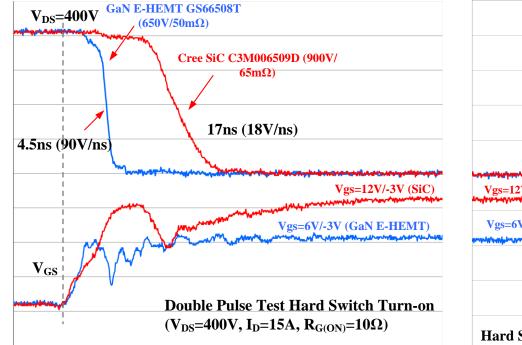
Systems

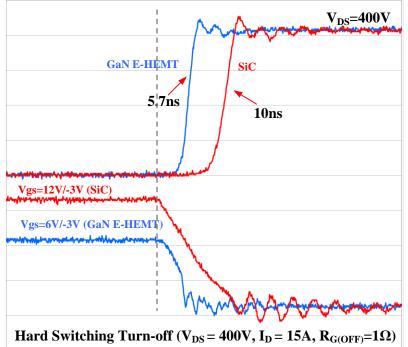
Zero Reverse Recovery

Zero reverse recovery results in lower switching loss and less EMI noise

Output Capacitance

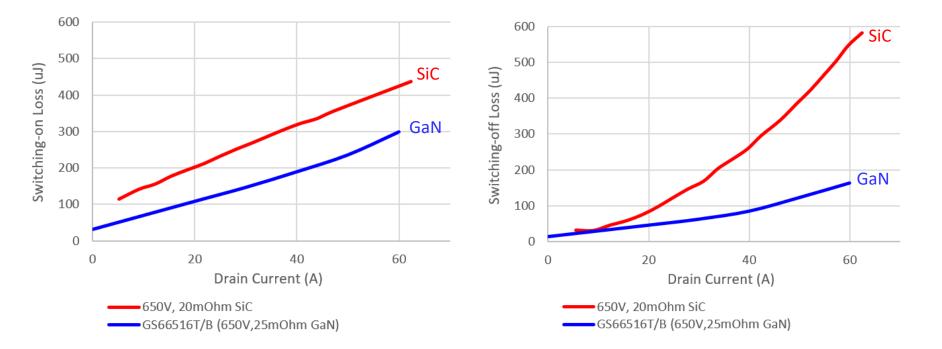
 $\begin{cases} Q_{oss} = C_{o(tr)} \cdot V \\ Q_{oss} = \int_{0}^{Vds} Coss(v) \, dv \end{cases}$


Coss curve \rightarrow Qoss curve \rightarrow Co(tr) value



Si SJMOS has ~10x higher Co(tr) than GaN; SiC MOS has ~50% higher Co(tr) than GaN.
 Smaller output capacitance results in lower switching loss and easier zero voltage switching realization (ZVS)

Faster Switching Transition

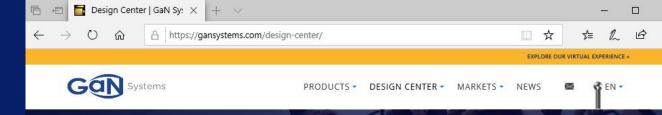


- GaN has 4x faster turn-on and 2x faster turn-off than state of art SiC MOSFET with similar R_{DS(ON)}
- Faster switching transition results in **lower switching loss**
- Layout is important for maximize the performance of GaN HEMTs. For more info: GN009 <u>https://gansystems.com/</u>

Switching Energy

The switching loss of a GaN HEMT is significantly lower than 650V SiC MOSFET with similar R_{DS(ON)}

Content


Basics and Mechanism

- **Characteristics**
- Design Resources

GaN Systems Design Center

Many resources available

- Easy to find
- Easy to use

GaN SYSTEMS' DESIGN CENTER

Welcome. The design center is where you'll be able to find resources for GaN Systems' transistors. These include application notes, evaluation kits, reference designs and more.

GET THE MOST OUT OF GaN SYSTEMS' TECHNOLOGY

APPLICATION NOTES Guides and design examples

Explore

CIRCUIT SIMULATION TOOL Quickly compare application conditions

EVALUATION BOARDS Hardware assets and reference designs

PAPERS AND PRESENTATIONS Expert insights on GaN technology and applications

Explore

APP NOTES

- Layout
- Gate Driver
- Paralleling
- Thermals
- Simulation
- Soldering

Application Notes

Our unique portfolio of GaN power transistors enables the design of smaller, lower cost, more edificient power systems that are free from the limitations of yesterday's silicon. Our application guides and design examples will help you understand and get the most out of GaN Systems' technology.

Document #	App Notes
GN001	An Introduction to GaN E-HEMTs
GN002	Thermal Design for Packaged GaN PX® Devices
GN003	Measurement Techniques for High-Speed GaN E-HEMTs
GN004	Design considerations of paralleled GaN HEMT
GN006	SPICE model for GaN HEMT usage guidelines and example
GN007	Modeling Thermal Behavior of $GaNPx^{\otimes}$ packages Using RC Thermal SPICE Models
GN008	GaN Switching Loss Simulation Using LTSpice
GN009	PCB Layout Considerations with GaN E-HEMTs
GN010	EZDrive TM Solution for GaN Systems E-HEMTs
GN011	Soldering Recommendations for GaNPX® Packaged Devices
GN012	Gate Driver Design with GaN E-HEMTs

Document #	App Notes – Japanese 日本語
GN001	GaN E-HEMTの概要
GN002	GaNPX® パッケージデバイスの熱設計
GN003	高速GaN E-HEMTの測定技術
GN004	GaN HEMTの並列動作の考慮事項
GN007	RCサーマルSPICEモデルを用いたGaNPXパッケージの熱モデル
GN008	LTSpiceを用いたGaNのスイッチングロスのシミュレーション
GN009	GaN E-HEMTを実装するPCBのレイアウト設計手順
GN010	GaN Systems' E-HEMTのためのEZDrive ソリューション
GN011	GaNPX®パッケージデバイスのはんだ付けに関する推奨事項
GN012	ゲートドライバ回路設計

Online Simulation Tool

Bridgeless Totem Pole Circuit Simulation Tool

Choose various source and load parameters, number of devices to parallel, heat sink parameters etc. Live simulated operating and swit waveforms are generated as well as data tables showing calculations for loss and junction temperature allowing you to compare the eff parameter variations or the operation of different parts directly. If you are interested in receiving the PLECS device model for GaN Syste ransistors, contact us,

PRODUCTS -DESIGN CENTER -MARKETS -NEWS

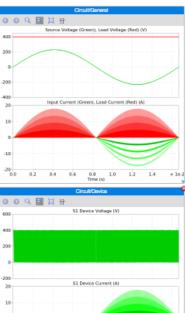
G EN -

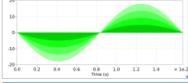
Vac

Simulate

Hold result

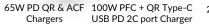
Welcome to the GaN Systems Circuit Simulation Tools


The Circuit Simulation Tool allows you to compare application conditions by implementing specific operating values. Choose various source and load parameters, number of devices to parallel, heat sink parameters etc. Live simulated operating and switching waveforms are generated as well as data tables showing calculations for loss and junction temperature allowing you to compare the effect of parameter variations or the operation of different parts directly.


You may also download the PLECS device model files for GaN Systems' transistors.

- > BRIDGELESS TOTEM-POLE PFC
- > SINGLE-PHASE, 2-LEVEL INVERTER
- > SINGLE-PHASE, 3-LEVEL HALF-BRIDGE INVERTER
- > SINGLE-PHASE T-TYPE 3-LEVEL INVERTER
- > ISOLATED HALF-BRIDGE LLC CONVERTER
- > ISOLATED PHASE-SHIFT FULL BRIDGE CONVERTER
- > THREE-PHASE TRACTION INVERTER
- > DUAL ACTIVE BRIDGE
- PLECS model is used on GaN Systems' online simulation tool
- All GaN Systems products model and 8 topologies available online https://gansystems.com/

GaN Device	Rdson ²		Output Voltage	Power Rating	Switching Frequency	Efficien
GS66508B/T/P	143 mΩ	230 V	400 V	496 W	50 kHz	99.31
GS66508B/T/P	108 mΩ	230 V	400 V	998 W	50 kHz	99.00
GS66508B/T/P	82 mΩ	230 V	400 V	1.498 kW	50 kHz	98.57
GS66508B/T/P	62 mΩ	230 V	400 V	1.999 kW	50 kHz	98.03


GaN transistor thermal overview				
Device	Switching	Conduction	Combined Losses *	Junction Temperature
GS66508B/T/P	1.44 W	0.29 W	3.42 W	28 °C
GS66508B/T/P	1.74 W	1.62 W	9.99 W	33 °C
GS66508B/T/P	2.06 W	4.48 W	21.46 W	40 °C
GS66508B/T/P	2.48 W	9.58 W	39.41 W	51 °C

GaN Systems Hardware Tools

250W AC/DC PFC & LLC Charger

300W Wireless Power

Amplifier

400W Class D Audio Amp & SMPS Eval Kit Audio Reference Designs

12V High-Efficiency Class D

650V test kit

650 V Universal Motherboard

EZDrive™ Eval Kit

650V 300W~500W Low Power IMS2 GaN Half-Bridge & driver board

17

50W Wireless Power Amplifier

100W Wireless Power

Amplifier

driver board

3KW High Efficiency LLC

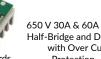
100V High-Speed

GaN Half-Bridge

3kW bridgeless totem pole PFC

High Power half bridge 650 V Half Bridge Bipolar Gate Drive Evaluation Board

High Power Dual Half Bridge Full Bridge, driver board



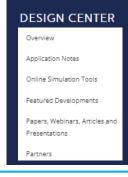
650 V Universal HB Isolated Driver 3kW & 6kW IMS3 half bridge power boards Motherboard for IMS2 & IMS3

650 V GaN E-HEMT Daughter Board

With driver board

Non-isolated Half Bridge Driver evaluation board

100V Buck/Boost Evaluation Board



Design Tools and Resources at gansystems.com

TRANSISTOR DOCUMENTS

DOWNLOADS Datasheet Spice Models Step File Allegro Library Altium Library

REACH Statement RoHS Certificate of Compliance

Online circuit simulation tool

Features

· Several topologies · GaN Systems products with paralleling options · Change values on input variables · Circuit and GaN transistor output waveforms

https://gansystems.com/

Application Notes

Document #	App Notes
GN001	An Introduction to GaN E-HEMTs
GN002	Thermal Design for Packaged GaN PX® Devices
GN003	Measurement Techniques for High-Speed GaN E-HEMTs
GN004	Design considerations of paralleled GaN HEMT
GN006	SPICE model for GaN HEMT usage guidelines and example
GN007	Modeling Thermal Behavior of ${\rm GaN}_{{\sf P}{\sf X}^{\boxtimes}}$ packages Using RC Thermal SPICE Models
GN008	GaN Switching Loss Simulation Using LTSpice
GN009	PCB Layout Considerations with GaN E-HEMTs
GN010	EZDrive TM Solution for GaN Systems E-HEMTs
GN011	Soldering Recommendations for GaNPX® Packaged Devices
GN012	Gate Driver Design with GaN E-HEMTs

Document #	App Notes – Japanese 日本語
GN001	GaN E-HEMTの概要
GN002	GaNPX® パッケージデバイスの熱設計
GN003	高速GaN E-HEMTの測定技術
GN004	GaN HEMTの並列動作の考慮事項
GN007	RCサーマルSPICEモデルを用いたGaNPXパッケージの熱モデル
GN008	LTSpiceを用いたGaNのスイッチングロスのシミュレーション
GN009	GaN E-HEMTを実装するPCBのレイアウト設計手順
GN010	GaN Systems' E-HEMTのためのEZDrive \vee リューション
GN011	GaNPX®パッケージデバイスのはんだ付けに関する推奨事項
GN012	ゲートドライバ回路設計

FAQ – Frequently Asked Questions

All / Device Characteristics / Gate Drive / General / Getting Started / High Frequency / Package & Assembly / Thermal Management

Systems

etc ...

- What are the advantages of GaN versus Silicon?
- 🗄 In which industries can the use of GaN power transistors drive significant business change?

Why should executives care as much about GaN technology as power system design engineers do?

⁸ What is GaN Systems' product portfolio?

Papers, articles and presentations

Tomorrow's power today[™]

Product and application support at gansystems.com