

Overview

- GaN Systems provides RC thermal models allowing customers to perform detailed thermal simulation using SPICE
- Models are created based on FEA thermal simulation and have been verified by GaN Systems
- The Cauer model has been chosen allowing customers to extend the thermal model to their system by including interface material and heat sinks
- The RC thermal models of GaN Systems' devices are available in the datasheets.

- ☐ RC network definition
- ☐ GaNPX® package RC model structure
- ☐ How to use the GaNPX® package RC model in a SPICE simulation
- SPICE simulation examples

RC network definition

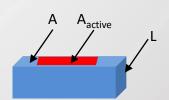
Thermal network

- Thermal resistance (R_θ)
- Thermal capacitance (C_θ)
- Time dependent temperature distribution

Analogy between Electrical and Thermal Parameters

Electrical Parameters	Thermal Parameters
Voltage V (V)	Temperature T (°C)
Current I (A)	Power P (W)
Resistance R (Ω)	Thermal resistance R ₀ (°C/W)
Capacitance C (F)	Thermal capacitance C_{θ} (W·s/°C)

Equations for calculating R_{θ} and C_{θ} :


•
$$R_{\theta} = L/(k \cdot A)$$
 (1)

•
$$R_{\theta} = L/(k \cdot A_{active})$$
 (2)

•
$$R_{\theta} = \Delta T/P$$
 (3)

•
$$C_{\rho} = C_{\rho} \cdot \rho \cdot L \cdot A$$
 (4)

•
$$C_{\theta} = C_{P} \cdot \rho \cdot L \cdot A_{active}$$
 (5)

where:

L - layer thickness (m)

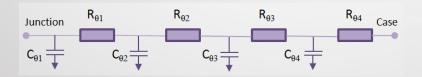
k - thermal conductivity (W/m·K)

A – layer area (m²)

A_{active} – device active area (m²)

T – temperature (°C)

C_P - pressure specific heat capacity (W·s/kg·K)

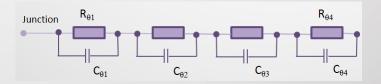

 ρ – density (kg/m³)

Cauer and Foster RC network

Cauer Model

- Cauer RC network is based on the physical property and packaging structure
- The RC elements are assigned to the package layers

Pros:


- Cauer RC model reflects the real, physical setup of the device
- Allows to add extra R_{θ} and C_{θ} to simulate the Thermal Interface Material (TIM) or Heatsink

Cons:

- · Detailed thermal analysis using FEM
- Challenge to extract the thermal capacitance

Foster Model

- Foster thermal model is not based on the physical property and packaging structure
- R_{θ} and C_{θ} are curve-fitting parameters

Pros:

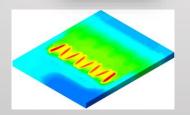
- Can be extracted from the datasheet transient respond curve
- Can be extracted form a measured heating or cooling curves

Cons:

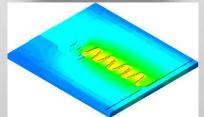
- · Valid only for measured conditions
- Adding extra resistance and capacitance requires a new curve fitting

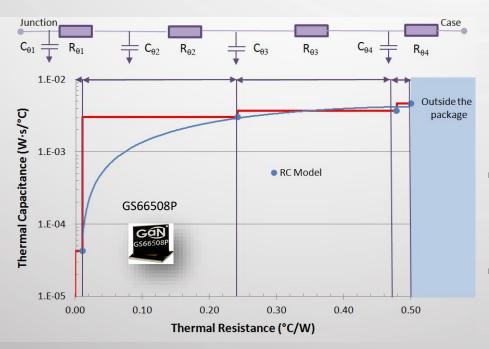
- ☐ RC network definition
- ☐ GaNpx® package RC model structure
- ☐ How to use the GaNPX® package RC model in a SPICE simulation
- SPICE simulation examples

GaNPX® package Junction-to-Case thermal resistance

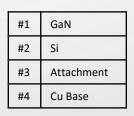

- The detailed steady state and transient thermal analysis were conducted using a 3D heat transfer software with Computational Fluid Dynamics (CFD) capabilities: ElectroFlo and ANSYS Icepack
- During the steady state analysis the device junction-to-case thermal resistance was obtained

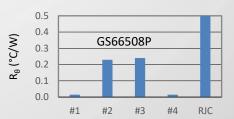
650 V Devices





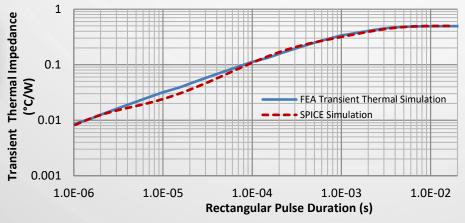
MPN	R _{OJC} (°C/W)
GS66502B	2.0
GS66504B	1.0
GS66508B	0.5
GS66508P	0.5

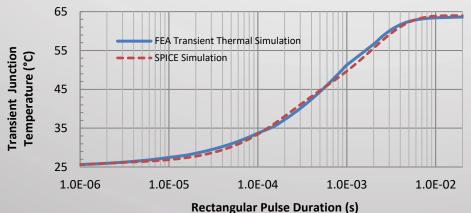

GaNPX® package RC model structure



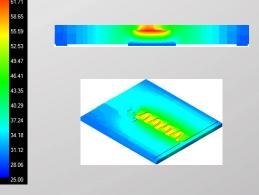
The Cauer model was chosen for all GaN Systems transistors

The GaN_Px® package consists of 4 layers:


- Layer thermal resistance was derived from the thermal simulation and calculated using the equation (3):
 - $R_{\theta 1} = \Delta T/P = (T_J T_1)/P$
- Layer thermal capacitance was calculated using the active area of the device (equation (5)):


•
$$C_{\theta 1} = C_{P1} \cdot \rho_1 \cdot L_1 \cdot A_{active}$$

Thermal and SPICE simulation comparison



GS66508P Cauer RC model

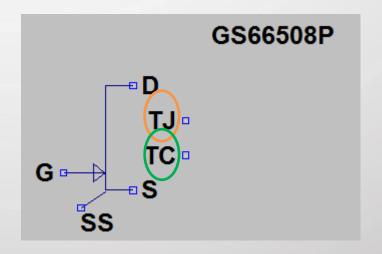
	R _θ (°C/W)	C _θ (W·s/°C)
#1	0.015	8.0E-05
#2	0.23	7.4E-04
#3	0.24	6.5E-03
#4	0.015	2.0E-03

Boundary Condition:

- Power P = 78 W
- $T_{case} = 25 \, ^{\circ}C$

Good agreement between transient thermal simulation and SPICE simulation has been achieved

- ☐ RC network definition
- ☐ GaNPX® package RC model structure
- ☐ How to use the GaNPX® package RC model in a SPICE simulation
- SPICE simulation examples


How to use GaN_{PX®} package RC model in a SPICE simulation

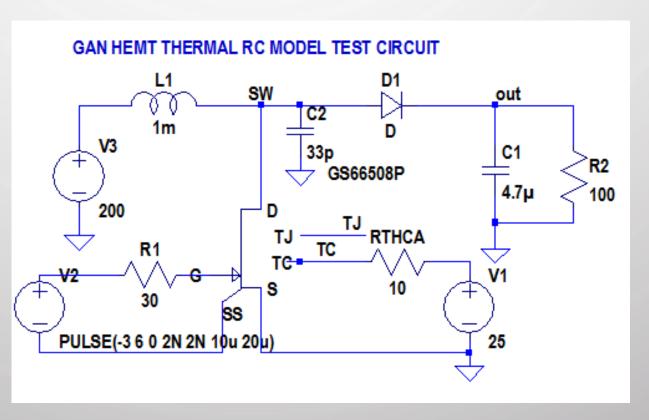
SPICE Netlist in .lib File:

Rth_1 T11 TJ {0.011}
Cth_1 0 TJ {4.25e-5}
Rth_2 T22 T11 {0.231}
Cth_2 0 T11 {2.96e-3}
Rth_3 T33 T22 {0.237}
Cth_3 0 T22 {6.65e-4}
Rth_4 TC T33 {0.021}
Cth 4 0 T33 {1.01e-3}

SPICE Symbol:

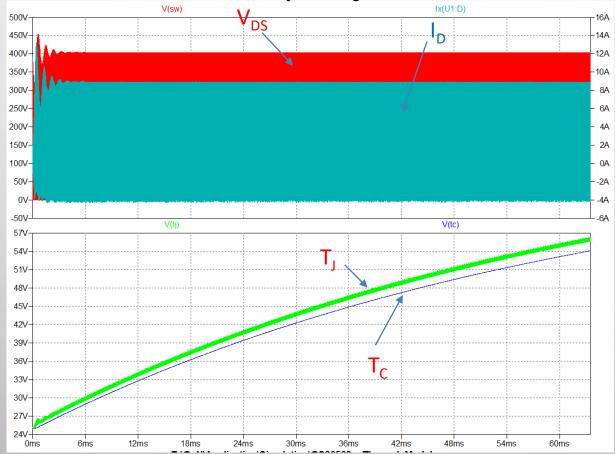
In the SPICE Schematics:

- Connect T_C to a voltage equal to the case temperature
- Read V(T₁) to measure the junction temperature


- ☐ RC network definition
- ☐ GaNPX® package RC model structure
- ☐ How to use the GaNPX® package RC model in a SPICE simulation
- ☐ SPICE simulation examples

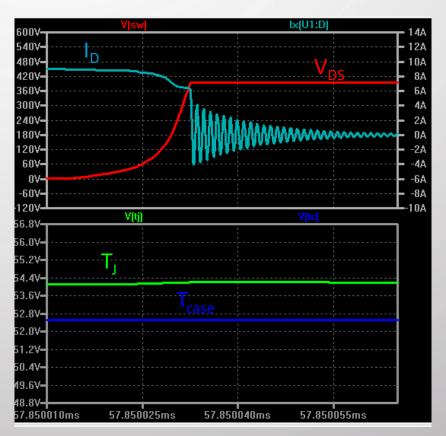
SPICE simulation examples

A simple boost converter circuit was used to verify the functionality of RC thermal model


- 200 400 V, I_{out} = 4 A
- D = 0.5, F_{sw} = 50 kHz
- $T_A = 25 \, ^{\circ}C$
- R_{THCA} = 10 °C/W
- Monitor T_J, T_C

SPICE simulation examples - waveforms

Transient thermal simulation showing T_J and T_C time constant for first 70ms


SPICE simulation examples – Switching transient

Thermal simulation – Turn-on

Thermal simulation – Turn-off

Product and application support at

gansystems.com