Gate Driver Circuit Design with GaN E-HEMTs

April 16, 2020
GaN Systems Inc.
Simple-driven GaN Technology

Common with Si MOSFET
- True enhancement-mode normally off
- Voltage driven - driver charges/discharges C_{iss}
- Supply Gate leakage I_{GSS} only
- Easy slew rate control by R_G
- Compatible with Si gate driver chip

Differences
- Much Lower Q_G : Lower drive loss; faster switching
- Higher gain and lower V_{GS} : +5-6V gate bias to turn on
- Lower $V_{G(th)}$: typ. 1.5V

Versus other enhancement-mode GaN
- More robust gate: -20/+10V max rating
- No DC gate drive current required
- No complicated gate diode / PN junction

GaN HEMTs are simple to drive
650V Drivers

- GaN Systems GaN HEMTs are compatible with most drivers for silicon devices.
- When the driver supply voltage (V_{DD}) is higher than +6V (the recommended turn-on V_{GS} for GaN), a negative V_{GS} generating circuit is required to convert the V_{GS} into $+6/-(V_{DD}-6)$ V, refer to page 7.
- V_{DD} is recommended to ≤12V.

Most popular solutions:

<table>
<thead>
<tr>
<th>Gate Drivers</th>
<th>Configuration</th>
<th>Isolation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si8271</td>
<td>Single switch</td>
<td>Isolated</td>
<td>Split outputs</td>
</tr>
<tr>
<td>Si8273/4/5</td>
<td>Half-Bridge</td>
<td>Isolated</td>
<td>Dead time programmability</td>
</tr>
<tr>
<td>ADuM4121ARIZ</td>
<td>Single Switch</td>
<td>Isolated</td>
<td>Internal miller clamp</td>
</tr>
<tr>
<td>ACPL-P346</td>
<td>Single Switch</td>
<td>Isolated</td>
<td>Internal miller clamp</td>
</tr>
<tr>
<td>HEY1011</td>
<td>Single Switch</td>
<td>Isolated</td>
<td>Power Rail Integrated</td>
</tr>
<tr>
<td>NCP51820</td>
<td>Half Bridge</td>
<td>Non-Isolated</td>
<td>Bootstrap voltage management</td>
</tr>
</tbody>
</table>
100V/80V Drivers

- GaN Systems GaN HEMTs are compatible with most of the drivers for silicon devices.
- When the driver supply voltage (V_{DD}) is higher than +6V (the recommended turn-on V_{GS} for GaN), a negative V_{GS} generating circuit is required to converter the V_{GS} into $+6/-(V_{DD}-6)$ V, refer to page 7.
- V_{DD} is recommended to ≤12V.

Most popular solutions:

<table>
<thead>
<tr>
<th>Gate Drivers</th>
<th>Configuration</th>
<th>Split Outputs</th>
<th>Bootstrap voltage management</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE29101</td>
<td>Half-Bridge</td>
<td>Yes</td>
<td>Yes</td>
<td>Frequency up to 33MHz</td>
</tr>
<tr>
<td>PE29102</td>
<td>Half-Bridge</td>
<td>Yes</td>
<td>No</td>
<td>Frequency up to 33MHz</td>
</tr>
<tr>
<td>uP1966A</td>
<td>Half-Bridge</td>
<td>Yes</td>
<td>Yes</td>
<td>General Purpose</td>
</tr>
<tr>
<td>LMG1205</td>
<td>Half-Bridge</td>
<td>Yes</td>
<td>Yes</td>
<td>General Purpose</td>
</tr>
<tr>
<td>LM5113-Q1</td>
<td>Half-Bridge</td>
<td>Yes</td>
<td>Yes</td>
<td>Automotive Qualified</td>
</tr>
</tbody>
</table>
GaN Systems GaN HEMTs are compatible with most of the controllers for silicon devices.

- When the driver supply voltage (V_{DD}) is higher than $+6V$ (the recommended turn-on V_{GS} for GaN), a negative V_{GS} generating circuit is required to convert the V_{GS} into $+6/-(V_{DD}-6)\ V$, refer to page 7.
- V_{DD} is recommended to $\leq 12V$.

Most popular solutions:

<table>
<thead>
<tr>
<th>Configurations</th>
<th>Controllers</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flyback</td>
<td>NCP1342</td>
<td>650V, Quasi-resonant</td>
</tr>
<tr>
<td>- Adapters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Chargers</td>
<td>UCC28600</td>
<td>600V, Quasi-resonant</td>
</tr>
<tr>
<td>- Other low-power AC/DCs</td>
<td>NCP1250</td>
<td>650V, Fixed frequency</td>
</tr>
<tr>
<td>Sync Buck DC/DC (48V/12V)</td>
<td>LTC7800</td>
<td>60V, Sync rectifier control, up to 2.2MHz</td>
</tr>
</tbody>
</table>
GaN Systems GaN HEMTs are compatible with most of the controllers for silicon devices. When the driver supply voltage\((V_{DD}) \) is higher than +6V (the recommended turn-on \(V_{GS} \) for GaN), a negative \(V_{GS} \) generating circuit is required to converter the \(V_{GS} \) into \(+6/(V_{DD}-6) \) V, refer to page 7. \(V_{DD} \) is recommended to \(\leq 12V \).

Most popular solutions:

<table>
<thead>
<tr>
<th>Configurations</th>
<th>Controllers</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLC</td>
<td>NCP13992</td>
<td>600V, current mode controller</td>
</tr>
<tr>
<td>- Adapters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Chargers</td>
<td>NCP1399</td>
<td>600V, current mode controller, off-mode operation</td>
</tr>
<tr>
<td>- Flat panel displays</td>
<td>UCC256404</td>
<td>600V, optimized burst mode, low audible noise and standby power</td>
</tr>
<tr>
<td>- Industrial power</td>
<td>UCC256301</td>
<td>600V, hybrid hysterical mode, low standby power, wide operating frequency</td>
</tr>
<tr>
<td>PFC</td>
<td>NCP1615 / NCP1616</td>
<td>700V, critical conduction mode operation</td>
</tr>
<tr>
<td>- PC Power Supplies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Appliances</td>
<td>UCC28180</td>
<td>Programable frequency, continuous conduction mode operation, no AC line HV sensing</td>
</tr>
<tr>
<td>- LED Drivers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFC + LLC</td>
<td>HR1203</td>
<td>700V, CCM/DCM Multi-mode PFC control, adjustable dead-time and burst mode switching LLC</td>
</tr>
</tbody>
</table>
Driver Circuit Examples

Single switch driver

- **Isolated**
 - 0V $V_{GS(OFF)}$ → Single Isolated Driver
 - Negative $V_{GS(OFF)}$ → EZDrive®
 - With voltage divider
 - Digital Isolator + Non-isolated Driver

- **Non-Isolated**
 - 0V $V_{GS(OFF)}$ → EZDrive®
 - Digital Isolator + Non-isolated Driver

Half/Full Bridge driver

- **Isolated**
 - Implement two single switch drivers

- **Non-Isolated**
 - 0V $V_{GS(OFF)}$ → Bootstrap driver
 - Negative $V_{GS(OFF)}$ → Bootstrap driver + EZDrive®

Paralleling GaN

- **Driver Circuit for GaN HEMT in Parallel**

When is negative $V_{GS(OFF)}$ needed?
• 0V $V_{GS(\text{OFF})}$ for low voltage or low power applications, or where the deadtime loss is critical
• Optional CM Choke for better noise immunity

Example I: Driver with separate outputs for switch ON/OFF (SI8271)

Example II: Driver with single output for switch ON and OFF (ADUM4121)
- Negative V_{GS} voltage is applied by the 47nF capacitor
- Compatible with bootstrap circuit
- Applicable from 1kW ~ 100kW power range
- Optional CM Choke for better noise immunity

Example: SI8271 EZDrive® circuit (V_{GS}=+6V/-3V)

For more info about GaN EZDrive®, please refer to GN010: https://gansystems.com/
Single GaN ➔ Isolated ➔ Negative $V_{GS(OFF)}$ ➔ with Voltage divider

- Negative V_{GS} voltage is generated by the voltage divider (5.8V Zener diode and 1kOhm resistor)
- Robust and easy to layout
- Applicable for applications from low power to higher power (1kW ~ 100kW)
- Optional CM Choke for better noise immunity

Example: SI8271 driving circuit with voltage divider ($V_{GS}=+6V/-3V$)
• To enable non-isolated driver or buffer with high sink current capability where isolation is required
• For high power applications: e.g. EV motor drive, PV inverter, etc
• Optional CM Choke for better noise immunity

Example: SI8610 (digital isolator) + UCC27511(Non-isolated driver) ($V_{GS(\text{OFF})}=\pm 6\,\text{V}$)
• For single-ended applications (Class E, Flyback, Push-pull etc)
• Or to work with a digital isolator for the high-side switch

Example: UCC27511 driving circuit ($V_{GS}=+6V/0V$)
- Negative V_{GS} voltage is applied by the 47nF capacitor
- Compatible with bootstrap circuit
- Optional CM Choke for better noise immunity

Example: UCC27511 driving circuit ($V_{GS}=+6V/-3V$)

For more info about GaN EZDrive®, please refer to GN010: https://gansystems.com/
• For low power applications
• Choose the bootstrap diode with low C_J and fast recovery time

Example: NCP51820 Bootstrap driving circuit ($V_{GS}=+6V/0V$)
• EZDrive® can get a negative voltage on 47nF capacitor, which can be used as turn off voltage
• Turn on/off slew rate is controllable with external resistors to optimize EMI
• Suitable for low power application

Example: NCP51530 Bootstrap driving circuit with EZdrive® (VGS=+6V/-3V)

For more info about GaN EZDrive®, please refer to GN010: https://gansystems.com/
• For HEMTs in parallel, add additional 1ohm gate and source resistors (as highlighted below)

Example: UCC27511 non-isolated driving circuit for single GaN (V_{GS}=+6V/0V)
Example: LM5113 bootstrap driving circuit for half-bridge (V_{GS}=+6V/0V)

For more info about GaN in parallel, please refer to GN004: https://gansystems.com/
Appendix

- Gate driving tips for $V_{GS(OFF)}$
- When is $V_{GS(OFF)}$ needed?
- $V_{GS(OFF)}$ vs. Switching-off Loss
- Trade-off between Switching-off Loss and Deadtime Loss
When is negative $V_{GS(OFF)}$ needed?

- Negative $V_{GS(OFF)}$ can increase noise immunity
- Negative $V_{GS(OFF)}$ can reduce switching-off loss especially under high-current
- Deadtime loss increases as Negative $V_{GS(OFF)}$ increase (more info please refer to page 9, APPNOTE GN001)
- There is a tradeoff between switching-off and deadtime loss for $V_{GS(OFF)}$ selection. -3V $V_{GS(OFF)}$ is recommended to start with for above 0.5kW applications.
Switching-off loss of GS66516B vs. current at $V_{BUS}=400$ V, $25^\circ C$, $R_G=1\Omega$

Negative V_{DROff} reduces the switching off energy under high current.
Relation between total loss and deadtime of GS66516B at $I_D=10\text{A}$, $25\,^\circ\text{C}$

ZVS boundary:

$$t_d > \frac{C_{eq} V_{bus}}{i_{\text{Switching}}} \quad (1)$$

$$0.5 \cdot L \cdot i_{S\text{min}}^2 > i_{S\text{min}} \cdot V_{SD} \cdot \left(t_d - \frac{C_{eq} V_{DC}}{i_{S\text{min}}} \right) + 0.5 \cdot C_{eq} \cdot V_{DC}^2 \quad (2)$$

- Deadtime loss increases as $V_{GS(OFF)}$ increases
- A too short dead time will result in losing ZVS, while a too long dead time will cause additional loss
Trade-off between Switching-off Loss and Deadtime Loss

Half-bridge overall loss vs. switching current under different negative turn-off gate voltage V_{DROff}
(a) with deadtime $t_D=40\ \text{nS}$, (b) with deadtime $t_D=100\ \text{nS}$, (c) with deadtime $t_D=200\ \text{nS}$.

- **Negative V_{DROff}** is will make the power stage more efficient under higher power.
- **Precise dead time control** is the key to higher system efficiency.