

GN001 Application Note

An Introduction to GaN Enhancement-mode HEMTs

April 16, 2020 GaN Systems Inc.

Basics and Mechanism

GaN Material and 2D Electron Gas (2DEG)

Enhancement-mode GaN HEMT

□ GaN Systems Simple-driven GaN technology

Characteristics

Design Resources

Please visit <u>http://gansystems.com</u> or the latest version of this document

Basic structure of GaN E-HEMT

GaN Enhancement mode High Electron Mobility Transistor (E-HEMT)

- A lateral 2-dimensional electron gas (2DEG) channel formed on AlGaN/GaN heteroepitaxy structure provides very high charge density and mobility
- For enhancement mode operation, a gate is implemented to deplete the 2DEG underneath at 0V or negative bias. A positive gate bias turns on the 2DEG channel
- It works like a MOSFET except with better switching performance

GaN HEMTs are **simple to drive**, for more info please refer to application note **GN012**

Simple-driven GaN Technology

Common with Si MOSFET

- True enhancement-mode normally off
- Voltage driven driver charges/discharges C_{ISS}
- Supply Gate leakage I_{GSS} only
- Easy slew rate control by R_G
- Compatible with Si gate driver chip

Differences

- Much Lower Q_G: Lower drive loss; faster switching
- Higher gain and lower V_{GS} : +5-6V gate bias to turn on
- Lower V_{G(th)}: typ. 1.5V

Versus other enhancement-mode GaN

- More robust gate: -20/+10V max rating
- No DC gate drive current required
- No complicated gate diode / PN junction

Gate Bias Level	GaN Systems GaN E-HEMT	Si MOSFET	IGBT	SIC MOSFET
Maximum rating	-20/+10V	-/+20V	-/+20V	-8/+20V
Typical gate bias values	0 or-3/+5-6V	0/+10-12V	0 or -9/+15V	-4/+15-20V

 $C_{ISS} = C_{GD} + C_{CS}$

Source

GaN Technology Comparison

GaN Systems E-mode HEMT

- True Enhancement mode
- Simple 3-terminal power switch
- Best FOM and performance
- Island technology Easy to scale
- GaNPx embedding package
- No reverse recovery loss
- Easy to parallel

D-mode GaN (Cascode) GaN Gate Ir

- D-mode technology
- Uncontrollable Speed (EMI)
- Internal Node causing reliability problems – Hard to troubleshoot
- Requires matching between Si/GaN

 Hard to scale
- Reverse Recovery (Qrr)
- Difficult to parallel

e) GaN Gate Injection Transistor (GIT)

- High gate current required (like BJT)
- Difficult to drive Complicated gate characteristics
- Recombination current:
 - Strong temperature dependency
 - Paralleling stability is a concern
 - Lower speed
 - Worse FOM than E-HEMT

Content

Basics and Mechanism

Characteristics

- □ Figure of merit
- □ Reverse conduction Characteristics
- □ Zero reverse recovery
- Output capacitance
- □ Switching transition
- □ Switching energy
- Design Resources

Figure of Merit

GaN Systems E-mode devices have superior R_{ON} & Q_G performance over Si and SiC MOSFETs, resulting in lower switching charge requirements and faster switching transition

Reverse Conduction Characteristics

- There is no body diode (as with Si and SiC MOSFETs)
- But, GaN 2DEG can conduct in 3rd quadrant No need for anti-parallel diode (as in Si IGBT)

For more info: https://gansystems.com/wp-content/uploads/2020/01/Common-misconceptions-about-the-MOSFET-body-diode.pdf

Systems

Zero Reverse Recovery

Zero reverse recovery results in lower switching loss and less EMI noise

Output Capacitance

 $\begin{cases} Q_{oss} = C_{o(tr)} \cdot V \\ Q_{oss} = \int_{0}^{Vds} Coss(v) \, dv \end{cases}$

Coss curve \rightarrow Qoss curve \rightarrow Co(tr) value

Si SJMOS has ~10x higher Co(tr) than GaN; SiC MOS has ~50% higher Co(tr) than GaN.
 Smaller output capacitance results in lower switching loss and easier zero voltage switching realization (ZVS)

Faster Switching Transition

 $V_{DS}=400V$

SiC

10ns

- GaN has 4x faster turn-on and 2x faster turn-off than state of art SiC MOSFET with similar R_{DS(ON)} •••
- Faster switching transition results in **lower switching loss** **
- Layout is important for maximize the performance of GaN HEMTs. For more info: GN009 https://gansystems.com/

Switching Energy

The switching loss of a GaN HEMT is significantly lower than 650V SiC MOSFET with similar R_{DS(ON)}

Basics and Mechanism

- **Characteristics**
- Design Resources

GaN Systems Design Center

Many resources available

- Easy to find
- Easy to use

GaN SYSTEMS' DESIGN CENTER

Welcome. The design center is where you'll be able to find resources for GaN Systems' transistors. These include application notes, evaluation kits, reference designs and more.

GET THE MOST OUT OF GaN SYSTEMS' TECHNOLOGY

APPLICATION NOTES Guides and design examples

Explore

CIRCUIT SIMULATION TOOL Quickly compare application conditions

EVALUATION BOARDS Hardware assets and reference designs

PAPERS AND PRESENTATIONS Expert insights on GaN technology and applications

Explore

APP NOTES

• Layout

- Gate Driver
- Paralleling
- Thermals
- Simulation
- Soldering

Application Notes

Our unique portfolio of GaN power transistors enables the design of smaller, lower cost, more efficient power systems that are free from the limitations of yesterday's silicon. Our application guides and design examples will help you understand and get the most out of GaN Systems' technology.

Document #	Title
GN001	Design with GaN Enhancement mode HEMT
GN001 日本語	エンハンスメントモードGaN-HEMTを用いた デザイン
GN002	Thermal Design for Top-Side Cooled ${\rm GaN}{\rm Px}^{\rm I\!\!B}$ packaged Devices
GN003	Measurement Techniques for High-Speed GaN E-HEMTs
GN004	Design considerations of paralleled GaN HEMT
GN005	PCB Thermal Design Guide for GaN Enhancement Mode Power Transistors
GN006	SPICE model for GaN HEMT usage guidelines and example
GN007	Modeling Thermal Behavior of GaN _{PX} ® packages Using RC Thermal SPICE Models
GN008	GaN Switching Loss Simulation Using LTSpice
GN009	PCB Layout Considerations with GaN E- HEMTs
GN010	EZDrive TM Solution for GaN Systems E- HEMTs
GN011	Soldering Recommendations for GaNPX [®] Packaged Devices

Online Simulation Tool

Systems

PRODUCTS

DESIGN CENTER MARKETS 🔻 NEWS 🚯 EN 👻

Welcome to the GaN Systems Circuit Simulation Tools

The Circuit Simulation Tool allows you to compare application conditions by implementing specific operating values. Choose various source and load parameters, number of devices to parallel, heat sink parameters etc. Live simulated operating and switching waveforms are generated as well as data tables showing calculations for loss and junction temperature allowing you to compare the effect of parameter variations or the operation of different parts directly.

You may also download the PLECS device model files for GaN Systems' transistors.

- > BRIDGELESS TOTEM-POLE PFC
- SINGLE-PHASE, 2-LEVEL INVERTER
- > SINGLE-PHASE, 3-LEVEL HALF-BRIDGE INVERTER
- SINGLE-PHASE T-TYPE 3-LEVEL INVERTER
- > ISOLATED HALF-BRIDGE LLC CONVERTER
- ISOLATED PHASE-SHIFT FULL BRIDGE CONVERTER
- > THREE-PHASE TRACTION INVERTER
- > DUAL ACTIVE BRIDGE
- PLECS model is used on GaN Systems' online simulation • tool
- All GaN Systems products model and 8 topologies • available online https://gansystems.com/

Bridgeless Totem Pole Circuit Simulation Tool

Choose various source and load parameters, number of devices to parallel, heat sink parameters etc. Live simulated operating and swit waveforms are generated as well as data tables showing calculations for loss and junction temperature allowing you to compare the eff parameter variations or the operation of different parts directly. If you are interested in receiving the PLECS device model for GaN Syste ransistors, contact us.

Circuit	16		
		VVIs Heabairis Tamb	
Input voltage Visc:	230	Vrms	
Input frequency:	£0 ±		
Load voltage Vdc:	400	V	
Inductance:	2	mH	
Switching frequency:	50	kHz	
Rated power:	2000	VA	
Load sweep selection:	Sweep	power rating P :	
Scaling factor for power rating:			
₿ 25%			
8 50%			
8 75%			
8 100%			
External turn-on gate resistance *:	10	Ω	
External turn-off gate resistance *:	2	Ω	
Turn-off gate-source voltage:	-2	V	
Deadtime:	100	ns	
Number of paralleled GaN transistors:	1 :		
Ambient Temperature:	25	°C	
Rth case to heatsink:		KW	
Rth heatsink to ambient:		ĸw	
Heatsink thermal capacitance:		J/K	
GaN HEMT:		1000	
	0		
GS86502B 650 V, 7.5 A, 200 mΩ GS86504B 650 V, 15 A, 100 mΩ			
 G3665045 G366506T G50 V, 22.5 A, 67 			
 GS66506B/T/P 650 V, 30 A, 50 m 			

Input v

Input fr

Load v

Inducts

Switch

Rated

Load s

Extern

Turn-o Deadir

Numbe Ambier

Rth cas

Rth he Heatsi GaNH

Simulate

□ GS66516B/T 650 V. 60 A. 25 mΩ

Hold result

		Voltage	Rating	Frequency	
143 mΩ	230 V	400 V	496 W	50 kHz	99.31 %
108 mQ	230 V	400 V	998 W	50 kHz	99.00 %
82 mΩ	230 V	400 V	1.498 KW	50 kHz	98.57 %
62 mΩ	230 V	400 V	1.999 kW	50 kHz	98.03 %
					×.
	108 mΩ 82 mΩ	108 mΩ 230 V 82 mΩ 230 V	108 mΩ 230 V 400 V 82 mΩ 230 V 400 V	108 mΩ 230 V 400 V 998 W 82 mΩ 230 V 400 V 1.498 kW	108 mΩ 230 V 400 V 998 W 50 kHz 82 mΩ 230 V 400 V 1.498 kW 50 kHz

GaN transistor thermal overview					
Device	Switching	Conduction	Combined Losses *	Junction Temperature	
GS66508B/T/P	1.44 W	0.29 W	3.42 W	28 °C	
GS66508B/T/P	1.74 W	1.62 W	9.99 W	33 °C	
GS66508B/T/P	2.06 W	4.48 W	21.46 W	40 °C	
GS66508B/T/P	2.48 W	9.58 W	39.41 W	51 °C	

Take Full Advantage of GaN – Evaluation Boards

GS665MB-EVB Motherboard + GS665xXDB-EVB Daughterboard Half bridge power stage

GSP65MB-EVB + GSP65RxxHB-EVB 2-7 kW Insulated Metal Substrate Configurable Full/Half Bridge Evaluation kit

GSP665x-EVBIMS2 2-6 kW Insulated Metal Substrate

Configurable Full/Half Bridge Evaluation kit

GS1200BTP-EVB

1.2kW Bridgeless Totem Pole Power Factor Correction Evaluation Board

GS-EVB-AUD-xxx1-GS GaN-based Class D Audio Amplifier and Companion power supply

GSWP050W-EVBPA GSWP100W-EVBPA GSWP300W-EVBPA

50W, 100W to 300W+ Wireless Power Transfer Power Amplifier Evaluation Kits

GS-EVB-HB-66508B-ON1 650V, ultra-small form factor Half Bridge power stage

25mm x 25mm Layout

GS65011-EVBEZ EZDrive[®] open loop boost evaluation board

Systems

Design Tools and Resources at gansystems.com

etc ...

TRANSISTOR DOCUMENTS

DOWNLOADS Datasheet Spice Models Step File Allegro Library Altium Library

REACH Statement RoHS Certificate of Compliance

DESIGN CENTER
Application Notes
Circuit Simulation Tools

Evaluation Boards

Papers & Presentations

Online circuit simulation tool

Features • Several topologies • GaN Systems products with paralleling options • Change values on input variables • Circuit and GaN transistor output waveforms

https://gansystems.com/

Application Notes

GN001	Design with GaN Enhancement mode HEMT
GN001 日本語	エンハンスメントモードGaN-HEMTを用いたデザイ ン
GN002	Thermal Design for Top-Side Cooled GaN <i>PX</i> [®] packaged Devices
GN003	Measurement Techniques for High-Speed GaN E- HEMTs
GN004	Design considerations of paralleled GaN HEMT
GN005	PCB Thermal Design Guide for GaN Enhancement Mode Power Transistors
GN006	SPICE model for GaN HEMT usage guidelines and example
GN007	Modeling Thermal Behavior of GaN <i>PX</i> [®] packages Using RC Thermal SPICE Models
GN008	GaN Switching Loss Simulation Using LTSpice
GN009	PCB Layout Considerations with GaN E-HEMTs
GN010	EZDrive SM Solution for GaN Systems E-HEMTs

FAQ – Frequently Asked Questions

All / Device Characteristics / Gate Drive / General / Getting Started / High Frequency / Package & Assembly / Thermal Management

- What are the advantages of GaN versus Silicon?
- 🗄 In which industries can the use of GaN power transistors drive significant business change?

Why should executives care as much about GaN technology as power system design engineers do?

What is GaN Systems' product portfolio?

Papers, articles and presentations

Document Details	Date
Common Misconceptions About the MOSFET Body Diode	2020 Jan
Using MOSFET Controllers to Drive GaN E-HEMTs	2020 Jan
GaN Technologies For Electric Vehicles	2020 Jan
Optimal Design for High Frequency GaN-Based Totem Pole PFC	2020 Jan
WEBINAR: Simple Layout Steps for Maximizing GaN Design Performance	2019 Nov
The Value of GaN HEMTs in 800V and Above Applications	2019 Jun
Power Amplifier and Coil Design Optimization for Large Air Gap Applications	2019 Jun
	etc

Tomorrow's power todayTM

www.gansystems.com • North America • Europe • Asia