

TRANSFORMING THE WORLD

WITH SMALLER, LOWER COST, MORE EFFICIENT POWER ELECTRONICS

Power Systems Design Get Going with GaN

> pcim EUROPE

GaN Systems company overview

Market leader for GaN power transistors

- GaN-on-Silicon transistors for the power conversion market
- Industry's most extensive & highest-performance products
 - Enhancement mode devices
 - 100V & 650V devices; industry-best performance

Global company with decades of experience in GaN

- Parts shipping overnight from Mouser since 2014
- World-class fabless manufacturing and advanced packaging
- HQ and R&D in Ottawa, Canada
- Sales & App. Eng. in Germany, Japan, China, Taiwan, Korea, USA

SILICON VALLEY

- Smaller size 2x to 10x
- Lighter weight 2x to 8x
- Lower power loss 2x to 6x
- BoM cost reduction 10% to 20%
- System cost reduction 10% to 30%

Power Supply with Silicon

You know the benefits. Is it difficult? How is it done?

Power Supply with GaN

Designing with GaN is straight-forward

- GaN is a super-fast FET
 - It's not difficult
 - It's not new
- Similarities to a Silicon MOSFET
 - True enhancement-mode, normally off
 - Voltage driven: driver charges/discharges C_{ISS}
 - Supply Gate leakage $\mathsf{I}_{\mathsf{GSS}}$ only
 - Easy slew rate control by $\rm R_{\rm G}$
 - Easily driven by Si gate driver chip
- Differences
 - Much Lower Q_G: lower drive loss; faster switching
 - Higher gain and lower V_{GS} : +5 or +6V gate bias to turn on
 - Lower $V_{G(th)}$: +1.5V

4

How to get the most advantage for your system

Higher frequency

Magnetics get smaller ... capacitors too

100 kHz 7 W/in³

4x smaller

500 kHz 30 W/in³

EMI filtering reduced

Resulting in power systems that are ...

Smaller size

Best topologies

Bridgeless Totem Pole

 More efficient, Lower cost Simpler, part count reduced 33%

T-type traction inverter

Better performance

Best components

Gate Driver

 Maximize performance with gate driver that has high CMTI, high dV/dt immunity

Even better performance

to minimize power loss

Magnetics

How to get the info?

- Layout
- Gate Driver
- Paralleling
- Thermals
- EMI
- Dynamic Rdson

Ga /stems

PRODUCTS -

Application Notes

Our unique portfolio of GaN power transistors enables the design of smaller, lower cost, more efficient power systems that are free from the limitations of yesterday's silicon. Our application guides and design examples will help you understand and get the most out of GaN Systems' technology.

DESIGN CENTER 🗸 MARKETS 🔹 NEWS 🛛 🐼 EN 🗸				
Document #	Title			
GN001	Design with GaN Enhancement mode HEMT			
GN001 日本語	エンハンスメントモードGaN-HEMTを用いたデザイン			
GN002	Thermal Design for Top-Side Cooled GaN <i>PX</i> [®] packaged Devices			
GN003	Measurement Techniques for High-Speed GaN E- HEMTs			
GN004	Design considerations of paralleled GaN HEMT			
GN005	PCB Thermal Design Guide for GaN Enhancement Mode Power Transistors			
GN006	SPICE model for GaN HEMT usage guidelines and example			
GN007	Modeling Thermal Behavior of GaN <i>PX</i> [®] packages Using RC Thermal SPICE Models			
GN008	GaN Switching Loss Simulation Using LTSpice			
GN009	PCB Layout Considerations with GaN E-HEMTs			
GN010	EZDrive SM Solution for GaN Systems E-HEMTs			

Layout, Parasitics, Thermals

- Circuit design
 - Control noise coupling from power to gate drive loop
 - Mitigate gate ringing/oscillations
- Minimizing parasitics
 - 5 step list including guidance on loop inductance and loop capacitance
- Layout best practice
 - 5 key areas to maximize performance

PCB Layout Checklist

Design for GaN_{PX}[®] embedded package

- GaN_{PX®} package bottom-side cooled (B, P)
- GaN_{PX®} package Top-side cooled (T) Thermal design

Minimize layout parasitics in the following order:

- 2. Gate loop inductance L
- 3. Power Loop inductance Lloor
- 4. Drain to gate loop capacitance C_{GD ext}
- 5. Isolation coupling capacitance C_{iso}

Key layout parasitics GaN Enhancement-mod HEMT Half Bridge

Svstems

GaN

Drivers and Controllers

- Validated list of drivers and controllers
- Half bridge and Full Bridge
- Design examples included

Recommended GaN driver/controller ICs

The following drivers have been verified by GaN Systems and are recommended for use with our GaN E-HEMTs:

Configurations Ga		ate Driver/Controller IC	Design resources
 650V Half/Full Bridge: 1. DC/DC: LLC, PSFB, Sync Boost/Buck 2. AC/DC: Totem pole PFC, Active Clamp Flyback 3. Inverter, motor drive 	SILICON LABS	Si8271 – Single; Si8273/4/5 – HB/Dual -GB (0-6V) or –AB (-3/+6V)	 Si827x Datasheet Si8271 demo board (GS66508T) IMS evaluation board User Guide
		ADuM4121ARIZ (0-6V Drive) ADuM4121BRIZ (-3/+6V Drive)	ADuM4121 Datasheet
	BROADCOM.	ACPL-P346 Use -4/+6V gate drive	ACPL-P346 Datasheet ACPL-P346 Evaluation Board with GS66508T
 80-100V Half/Full bridge 48V DC/DC 48V POL Sync. Buck/Boost Class D Audio Wireless Power Transfer 	TEXAS INSTRUMENTS	LM5113(NRND): 100V, max 5MHz LMG1205: 80V/5A HB Driver	 <u>LM5113 Datasheet</u> <u>LMG1205 Datasheet</u>
	Semi	PE29101: 100V, 48V DC/DC, 33MHz PE29102: 60V, Class D Audio, WPT, 40MHz	 PE29100 Datasheet PE20102 Datasheet PE29102 Demo board (GS61004B)
		UPI Semi GaN FET drivers: uP1966A: Dual-Channel GaN driver	 <u>uP1966A GaN Driver</u> Ultra High Speed 80V HB Driver for GaN Application
	-		GaN Syst

Recommended GaN driver/controller ICs

Configurations	Gate Driver/Controller IC		Design resources
Low side non-isolated driver for 650V/100V GaN': 1. Flyback, Push-pull 2. Forward 3. Boost PFC 4. Secondary SR 5. Class E P/A	TEXAS INSTRUMENTS	LM5114/UCC27511: Single Channel, 4A, 5-6V drive UCC27611: w/ internal LDO (5V)	 <u>LM5114 Datasheet</u> <u>UCC2751x Datasheet</u>
		uP1964: Internal LDO for 6V drive	uP1964 Datasheet
	Other GaN compatible drivers	IXD609SI: Single, 6V drive, high drive current (9A) FAN3122/TC4422: Single, 6V drive, high drive current (9A) FAN3223/4/5: Dual 4A, 6V drive, for push-pull or SR application	
Sync Buck DC/DC (100V GaN): 1. 48V-12V DC/DC	ANALOG DEVICES	LTC7800: 60V, Sync. Step-Down Controller (up to 2.2MHz, w/ integrated GaN compatible drivers)	<u>LTC7800 Datasheet</u>
Secondary side Rectification (100V GaN):	ON Semiconductor*	NCP4305A: 5V gate drive clamp, 1MHz max	MCP4305 Datasheet
 High frequency LLC Flyback 	lite.cugmented	SRK2001: Adaptive SR controller for LLC, 5-6V drive for GaN, 500KHz max	SRK2001 Datasheet

[*] Low side non-isolated drivers can also be used on high side / half bridge configurations by combining with level-shift / signal isolators, see page 29 for design example.

Svstems

GaN	System
-----	--------

Option to eliminate external gate driver

EZDrive[™] circuit

- Use standard MOSFET controller with integrated driver to drive GaN Systems' transistors
- Low cost, easy way to implement a GaN driving circuit
- Adaptable to wide range of power levels, frequency, and LLC and PFC controllers
- The EZDrive circuit also provides design control for the optimization of efficiency and EMI

Summary – GaN Systems' EZDriveSM Solution

- Universally converts any IC controller/driver to properly drive GaN Systems transistors
- Eliminates the redundant GaN drivers & LDOs of a monolithic integrated driver GaN device
- Turn ON / OFF slew rate is controllable with external resistors for complete control of EMI
- Applies to single, dual, or high-side/low-side controllers with drivers

- Eliminates drivers
- Higher power density

Lower Cost

GaN Systems – 14

Modeling GaN devices and circuits

- Device-level simulation
 - LTspice and Pspice
 - Device characteristics (Q_a, C_{oss}/C_{iss} , IV/CV curve, E_{on}/E_{off})
 - Simple system simulation
 - Capability to observe parasitic effect on switching performance
- System-level simulation
 - PLECS
 - Simplify the switching transient
 - Observe converter operating waveforms
 - Accommodate complicated device-based, system-level simulation and analysis

Spice

Svstems

اوھے

Dynamic Rds(on)

- Clear analysis presented at PCIM
 - Define what it is
 - How to test
 - Measure the loss
 - Quantify the impact

- Conclusion
 - Power loss due to dynamic Rds is insignificant in total system power loss
 - Total system power loss: GaN outperforms silicon by a wide margin

The Effect of Dynamic On-State Resistance to System Losses in GaNbased Hard-Switching Applications

Ruoyu Hou, Juncheng Lu, GaN Systems, CDN

Evaluation Kits and Reference Designs

1.5-2.5kW Half bridge power stage and universal motherboard

3 kW bridgeless totem pole PFC

2-7 kW Insulated Metal Substrate Configurable Full/Half Bridge

170W AC/DC PFC/LLC

14 kW Insulated Metal Substrate **Reference Design**

Buck Converter with 5MHz GaN Driver

EZDrive[™] Eval Kit

50W, 100W to 300W+ Wireless Power Transfer **Power Amplifiers**

Full Bridge optimized for Class D Amplifier

GaN Design Center

- GaN is not difficult
 - Many similarities to MOSFET
 - Differences require attention to detail but no new concepts
- Many resources available
 - Easy to find
 - Easy to use
 - GaN Systems applications engineering team to help

Join the wave - revolutionize your power electronics

Broadest line of Products

Many Eval Kits & Reference Designs

High density PFC/LLC

300 W wireless power transfer