Highly Efficient High Power PA Design for Resonant WPT
March 2018
Outline

• Brief company overview
• WPT applications
• MHz vs kHz
• Tx topologies for WPT
• High power PA design for WPT with Gan Systems devices
 – 300W Class EF2 PA with GS66508B
 – 100W Class FE2 PA with GS61008P
• GaN Systems offering for WPT application
Market leader for gallium nitride (GaN) power transistors
• GaN-on-Silicon power transistors for the power conversion market
• Industry’s most extensive & highest-performance product line
 • Enhancement mode devices
 • 100V & 650V devices; industry-best performance

Global company with decades of experience in GaN
• HQ and R&D in Ottawa, Canada
• Sales & App. Eng. in Germany, Japan, China, Taiwan, Korea, USA
• World-class fabless manufacturing and advanced packaging
• Parts shipping overnight from Mouser since 2014
A complete GaN product portfolio

Product characteristics
- Low resistance
- Very high current
- 100V and 650V product families

GaN Systems device on a traditional T0-247 package
Wireless Power Transfer

Everything.
Applications for Cutting the Cord

• Laptops
• Phones
• Power Tools
• Home appliances
• eBikes
• Drones
• Robots
•
WPT Trends and Technology Drivers

Trends
- Fast charge, variable Tx/Rx spacing, increasing power levels

Technology Drivers
- High switching frequency, high current, high voltage

30W → 65W → 180W → 1000 to 2500W → 6000 to 22000W
Power Transfer Standards

<table>
<thead>
<tr>
<th>Standard organization</th>
<th>Wireless Power Consortium (Qi)</th>
<th>AirFuel Alliance (Rezence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Inductive</td>
<td>Resonant</td>
</tr>
<tr>
<td>Frequency range</td>
<td>80 to 300 kHz</td>
<td>6.78 MHz</td>
</tr>
<tr>
<td>Max. Xfr range</td>
<td>5 mm</td>
<td>50 mm</td>
</tr>
<tr>
<td>No. charging devices</td>
<td>One</td>
<td>Multiple ok.</td>
</tr>
<tr>
<td>Communications system</td>
<td>Load modulation</td>
<td>Bluetooth</td>
</tr>
</tbody>
</table>

- **WPC**
 - Formerly Qi
 - Primarily inductive
- **AirFuel**
 - Formerly PMA, AW4P, Rezence
 - Primarily resonant

GaN compatible with all standards
MHz vs kHz frequencies – Inverter

kHz WPT systems
- Good efficiency **only** for very low distances, a few millimeters, and **only** when the coils are precisely aligned.
- Efficiency drops rapidly as the coils move apart and the induced voltage at the receiver becomes very low and therefore is inefficient to rectify.
- Uses a lot of ferrite to guide the magnetic flux, this limits the position of the receiver to a fixed position.

MHz WPT systems
- High power transfer efficiency across a much greater distance.
- Allows for better tolerances to coil misalignment.
- The inverter ‘sees’ more of the receiver, i.e. the reflected resistance \(R_{\text{ref}} \) of the load increases.
- Therefore power can be transferred at lower coil currents.
- Lower coil currents mean less conduction losses in the inverter, resulting in higher inverter efficiency and higher system efficiency.

Equation
\[
R_{\text{ref}} = \frac{\omega^2 M^2}{R_{\text{Load}}}
\]
Wireless Power System

Source - Transmitter (Tx)
1) Amplifier
2) Impedance Matching Network
3) Tx Coil

Device - Receiver (Rx)
1) Rx Coil
2) Impedance Matching Network
3) Rectifier
4) Load

GaN FETs are used in the Transmitter Amplifier
Switch mode PA typologies analysis

Class D/E/EF2 topologies

Class D with ZVS

\[
P = \frac{8}{\pi^2} \frac{V_R^2}{R_L} = \frac{8}{\pi^2} \frac{R_L}{(R_L + r_{sat})^2} V_{cc}^2.
\]

\[
\eta = \frac{P}{P_0} = \frac{8}{\pi^2} \approx 81\%.
\]

Class E with shunt C

\[
R = \frac{8}{\pi^2 + 4} \frac{V_{cc}^2}{P_{out}} = 0.5768 \frac{V_{cc}^2}{P_{out}}.
\]

\[
\eta = \frac{P_{out}}{P_0} = \frac{P_0 - P_{sat}}{P_0} = 1 - \frac{P_{sat}}{P_0}.
\]

Class EF2

\[
P_o = 0.6105 \frac{V_{IN}^2}{R_L}.
\]

\[
\eta = \frac{1}{1 + P_{L_1} + P_{DS} + P_{C_1} + P_{L_2}C_2 + P_{L_3}C_3 + P_f}.
\]

Circuit diagram of the Class EF or Class E/F inverter.
Efficiency comparison typologies Class D/E/EF2

- Simulations of MOSFET at 6.78MHz, 25V DC
 - Class D: Max efficiency 82.4%
 - Class E: Max efficiency 93.9%
 - Class EF2: Max efficiency 93.4%
Impedance window comparison typologies Class D/E/EF2

- Single ended configuration at 6.78MHz, 25V DC, red = power, blue = efficiency
 - Class D: low impedance point is point of maximum power and efficiency, power is limited by dissipation power, so PA cannot operate at maximum power and efficiency
 - Class E: low impedance point is the maximum power point, not near its optimum power and efficiency point
 - Class EF2: both efficiency and power are maximized

Class D with ZVS
Class E with Cshunt
Class EF2
GaN Systems WPT Class EF2 turn key PA solution

- Device 650V, GS66508B, Push Pull
- Thermal solution: copper coins solder down
- Design built in EMI filter
- Unique output filter network design naturally provide constant current

Designed to simultaneously achieve power, efficiency, EMI and constant current behavior.
150W PA Efficiency

- 50ohm load
- 156W output
- 93% efficiency
- T rise 2 degree at device

- 50ohm load
- 150W output
- 87% efficiency
- T rise 2 degrees at device
At 150W output power, 3rd harmonic rejection is -42dBc with EMI filter, more than -60dBc rejection on high order harmonics.
At 150W output power without EMI filter, hottest point is located at RF choke inductor 61 degree C.

Hottest point is located at 2nd harmonic shunt inductor, 86 degree C, temperature at device is in control, less than 31 degrees C.
150W PA System Test

- **End to end efficiency = 86%**

Power Ratings
- Input Voltage = 43 V (DC)
- Input Current = 1.61 A (DC)
- Output Voltage = 74.8 V (rms)
- Output Current = 0.8 A (rms)
Turn key solution of Class EF2 70W/100W PA for WPT

GaN Systems WPT Class EF2 turn key PA solution

- Device 100V, GS61008P, Push Pull
- Thermal solution: copper coins solder down
- Design built in EMI filter
- Unique output filter network design naturally provide constant current

Designed to simultaneously achieve power, efficiency, EMI and constant current behavior.
70W PA Efficiency and Thermals

- 50ohm load
- 27V, 78W output
- 90% efficiency
- T rise is 2 degrees at the device

- 77W output power
- Warmest point is at RF choke, 48 deg. C
- Transistor temp is less than 31 deg. C

Thermal image with EMI filter at 27V
70W PA Class EF2 voltage waveforms

70W PA Class EF2 without EMI filter

- Low stress voltage wave at both devices at 27V
- $V_{\text{max}}/V_{\text{cc}} = 2.3$ at 50ohm
- Output current is not a perfect sine wave due to harmonics

70W PA Class EF2 with EMI filter

- Low stress voltage wave at both devices at 27V
- $V_{\text{max}}/V_{\text{cc}} = 2.6$ at 50ohm
- Output current is almost a perfect sine wave
High Power GaN devices for Resonant WPT

<table>
<thead>
<tr>
<th>GS61004B</th>
<th>GS61008B</th>
<th>GS66508B</th>
<th>DS66516B</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 300W CW at 50V</td>
<td>• 600W CW at 50V</td>
<td>• 600W CW at 100V</td>
<td>• 1000W CW at 100V</td>
</tr>
<tr>
<td>• 1 kHz – 150 MHz</td>
<td>• 1 kHz – 120 MHz</td>
<td>• 1 kHz – 80 MHz</td>
<td>• 1KHz – 80 MHz</td>
</tr>
<tr>
<td>• 40 dB gain at 10 MHz</td>
<td>• 40 dB gain at 10 MHz</td>
<td>• 37 dB gain at 10 MHz</td>
<td>• 37 dB gain at 10 MHz</td>
</tr>
<tr>
<td>• 91% efficiency at 10 MHz</td>
<td>• 90% efficiency at 10 MHz</td>
<td>• 91% efficiency at 10MHz</td>
<td>• 90% efficiency at 10MHz</td>
</tr>
<tr>
<td>• GaNPX® package</td>
<td>• GaNPX® package</td>
<td>• GaNPX® package</td>
<td>• GaNPX® package</td>
</tr>
<tr>
<td>• Handles >10:1 VSWR</td>
<td>• Handles >10:1 VSWR</td>
<td>• Handles >10:1 VSWR</td>
<td>• Handles >10:1 VSWR</td>
</tr>
<tr>
<td>• Advanced integrated design provides gate-source voltage range (-10V to +7V) to enhance performance when operating in switching modes such as Class C, E, EFn.</td>
<td>• Advanced integrated design provides gate-source voltage range (-10V to +7V) to enhance performance when operating in in switching modes such as Class C,E,EFn.</td>
<td>• Advanced integrated design provides gate-source voltage range (-10V to +7V) to enhance performance when operating in in switching modes such as Class C,E,EFn.</td>
<td>• Advanced design integrated provides gate-source voltage range (-10V to +7V) to enhance performance when operating in in switching modes such as Class C,E,EFn.</td>
</tr>
</tbody>
</table>

GaN Systems enables compact, low cost, high power wireless charging
Conclusions

• **WPT is growing in many markets and applications**
 - Need high power, spatial freedom and high efficiency

• **MHz systems are better than kHz**
 - Wireless power is about mobility, you want to be able to charge and power devices without being limited to a fixed position. MHz provides this capability.

• **GaN Systems provides high performance solutions**
 - 100W and 300W PA kits demonstrate high efficiency at high power output
 - The Tx architecture design offers exceptional EMI performance
 - Enable end-to-end efficiency approaching 90%