Parasitic Capacitance E_{qoss} Loss Mechanism, Calculation, and Measurement in Hard-Switching for GaN HEMTs

Ruoyu Hou, Juncheng Lu, and Di Chen
GaN Systems Inc.
1. Introduction
2. E_{qoss} loss mechanism
3. E_{qoss} loss calculation
4. E_{qoss} loss measurement method and experimental verification
5. Conclusions
1. Introduction

- GaN HEMTs can be applied to both soft-switching and hard-switching applications.
- For soft-switching ZVS technique, the turn-on switching loss is zero.
- This application note is about the parasitic capacitance loss during the turn-on of the hard-switching application.
Hard-switching transition of Si MOSFET

1. Snappy reverse recovery
2. High \(E_{\text{on}} \) loss
3. High \(\frac{dI}{dt} \), parasitic ringing

Math: \(V_{\text{DS}} \times I_D \)

Si MOSFET \(E_{\text{on}} = 6670 \mu \text{J} \)

Hard switching turn-on of a Si SJ MOSFET @ 400V/22A
2. E_{qoss} loss mechanism

Hard-switching transition of GaN E-HEMT

1. Much lower turn-on loss
2. No snappy recovery and uncontrolled high dl_r/dt
3. Clean waveforms

Hard switching turn-on of a GaN E-HEMT @ 400V/22A

- Zero Q_{rr} loss
- Zero Q_{rr} period

Switch commutation operating principle of GaN HEMT
2. E_{qoss} loss mechanism

Hard-switching loss distribution

Hard switching turn-on of a Si SJ MOSFET @ 400V/22A

Math: $V_{DS} \cdot I_D$

Hard switching turn-on of a GaN E-HEMT @ 400V/22A

Math: $V_{DS} \cdot I_D$

Hard-switching turn-on loss of Si MOSFET

Hard-switching turn-on loss of GaN HEMT
2. E_{qoss} loss mechanism

Switching loss distribution of GaN HEMT

<table>
<thead>
<tr>
<th>Loss distribution</th>
<th>External measurement</th>
<th>Intrinsic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn-on loss E_{on}</td>
<td>$E_{Vlion} + E_{qoss}$</td>
<td>$E_{Vlion} + E_{qoss} + E_{oss}$</td>
</tr>
<tr>
<td>Turn-off loss E_{off}</td>
<td>$E_{Vloff} + E_{oss}$</td>
<td>E_{Vloff}</td>
</tr>
</tbody>
</table>

- E_{qoss} and E_{oss} loss affect the overall E_{on} loss, especially under light load operating condition.
- Accurate E_{qoss} and E_{oss} loss calculations are necessary.

External measured E_{on}/E_{off} switching loss distribution

Intrinsic E_{on}/E_{off} switching loss distribution

3. E_{qoss} loss calculation

- E_{oss} loss calculation equation does not apply to E_{qoss}.

$$E_{oss} \text{ loss: } E_{oss} = \int_0^{V_{dc}} V_{ds} \cdot C_{oss}(V_{ds}) dV_{ds}$$

- E_{qoss} loss is higher than E_{oss} loss, as usually the C_{oss} of the device is higher at lower voltage V_{ds} region.

$$E_{qoss} \text{ loss: } E_{qoss} = \int_0^{V_{dc}} (V_{dc} - V_{ds}) \cdot C_{oss}(V_{ds}) dV_{ds}$$

Parasitic capacitance C_{oss}

E_{oss}/E_{qoss} loss of GS66508T at different operating voltage
E_{qoss} loss comparison with Si MOSFET

- The capacitance C_{oss} of Si MOSFET is more nonlinear than GaN's.
- Much higher C_{oss} value under low voltage region.
- E_{qoss} loss of Si MOSFET is significantly larger.

\[\Delta C = 120 \times \]

Comparison of parasitic capacitance C_{oss}

Comparison of E_{qoss} loss under 400V

Comparison of E_{qoss} loss under different V_{ds}
On double pulse test (DPT) circuit, the measured $E_{\text{oss}}/E_{\text{qoss}}$ also includes the parasitic capacitances from PCB and inductor. Taking C_{pcb} and C_{pl} into account:

$$E_{\text{oss}} = \int_0^{V_{\text{dc}}} V_{\text{ds}} \cdot C_{\text{oss}(V_{\text{ds}})} dV_{\text{ds}} + \frac{1}{2} (C_{\text{pl}} + C_{\text{pcb}}) V_{\text{dc}}^2$$

$$E_{\text{qoss}} = \int_0^{V_{\text{dc}}} (V_{\text{dc}} - V_{\text{ds}}) \cdot C_{\text{oss}(V_{\text{ds}})} dV_{\text{ds}} + \frac{1}{2} (C_{\text{pl}} + C_{\text{pcb}}) V_{\text{dc}}^2$$

- A Q3D simulation has been performed on the GS66508T evaluation board.
- The total voltage-independent capacitance is about 20 pF.
A. Load current independence

- Several double pulse tests based on GS66516T under different load currents were performed.
- The load current independence of the current bump also indicates the absence of body diode.
B. E_{qoss} loss measurement method

- During the DPT, the E_{qoss} can be measured either upon turn-on of the first pulse or on the turn-on of the second pulse.

- In order to simplify the E_{qoss} loss measurement, the loss is measured at the turn-on of the first pulse which the V/I loss is zero.
C. \(E_{qoss} \) loss measurement setup

- To verify the impact factor and also the value of the loss, the DPT platform with closed-loop temperature control is applied.
D. Junction temperature and switching speed independence

• \(R_{g_on} \) is chosen as 30 ohm and 50 ohm, as the purpose of the test is to prove the switching speed independence and also measure the \(E_{qoss} \) energy loss as accurate as possible.

- 100 Vdc with \(T_j=75^\circ C \) and \(R_{g_on}=30 \) ohm
- 200 Vdc with \(T_j=25^\circ C \) and \(R_{g_on}=30 \) ohm
- 300 Vdc with \(T_j=25^\circ C \) and \(R_{g_on}=50 \) ohm
- 400 Vdc with \(T_j=75^\circ C \) and \(R_{g_on}=30 \) ohm
Summary on E_{qoss} loss measurement

- Test results are consistent which indicates E_{qoss} is also independent on the junction temperature and switching speed.

- By considering the other parasitic capacitances, the discrepancy between the theoretical values and measured values is relatively small, verifying the calculation method.

![Graph showing measured results with different T_j and R_g](image1)

![Graph comparing measurement and calculation results](image2)
5. Conclusions

- Detailed E_{qoss} loss mechanism, calculation and measurement method for GaN HEMTs are presented.

- The E_{qoss} loss of GaN HEMT is significantly lower compared with Si MOSFET.

- Experimental results verify the E_{qoss} loss calculation method and also prove that the loss is only a function of voltage and the corresponding capacitances.

- The accurate E_{qoss} loss calculation yields a more accurate E_{on} loss estimation, especially under light load condition.